21 research outputs found

    Haustorium formation and a distinct biotrophic transcriptome characterize infection of Nicotiana benthamiana by the tree pathogen Phytophthora kernoviae

    Get PDF
    Phytophthora species cause some of the most serious diseases of trees and threaten forests in many parts of the world. Despite the generation of genome sequence assemblies for over 10 tree-pathogenic Phytophthora species and improved detection methods, there are many gaps in our knowledge of how these pathogens interact with their hosts. To facilitate cell biology studies of the infection cycle we examined whether the tree pathogen Phytophthora kernoviae could infect the model plant Nicotiana benthamiana. We transformed P. kernoviae to express green fluorescent protein (GFP) and demonstrated that it forms haustoria within infected N. benthamiana cells. Haustoria were also formed in infected cells of natural hosts, Rhododendron ponticum and European beech (Fagus sylvatica). We analysed the transcriptome of P. kernoviae in cultured mycelia, spores, and during infection of N. benthamiana, and detected 12,559 transcripts. Of these, 1,052 were predicted to encode secreted proteins, some of which may function as effectors to facilitate disease development. From these, we identified 87 expressed candidate RXLR (Arg-any amino acid-Leu-Arg) effectors. We transiently expressed 12 of these as GFP fusions in N. benthamiana leaves and demonstrated that nine significantly enhanced P. kernoviae disease progression and diversely localized to the cytoplasm, nucleus, nucleolus, and plasma membrane. Our results show that N. benthamiana can be used as a model host plant for studying this tree pathogen, and that the interaction likely involves suppression of host immune responses by RXLR effectors. These results establish a platform to expand the understanding of Phytophthora tree diseases

    Agricultural land use determines functional genetic diversity of soil microbial communities

    No full text
    Microbial communities play a major role in the degradation of soil organic matter (SOM) in soils. Despite its significance, the functional diversity of the highly diverse microbial communities is poorly understood. To address this, we applied a recently developed technique, captured metagenomics, to determine the effects of land-use on the functional genetic diversity of genes involved in the carbon degradation of SOM in five pairs of agricultural soils with either winter wheat or grass as management. In addition, 16S rRNA based amplicon sequencing was used to study the taxonomic composition in the same soils. The functional genes resulting from the captured metagenomes had a higher abundance and diversity of sequences coding for enzymes degrading SOM in the grasslands compared to the wheat soils. Though the taxonomic diversity did not correlate with the land use. Amounts of C and N (organic matter content) in the soils affected both functional and taxonomic diversity of the microbial communities, where N was highly correlated to their functions and C was highly correlated to their taxonomy. Captured metagenomic analyses of the functional genes may provide a measure of the potential SOM degradation capacity by soil microbial communities at a high resolution. This can be used for assessments of how agricultural management affects the functioning of soil communities

    Draft genome sequence of the mycoparasitic oomycete Pythium oligandrum strain CBS 530.74

    No full text
    The oomycete Pythium oligandrum is a mycoparasite and licenced biological control agent. Here, we report the draft genome sequence of P. oligandrum strain CBS 530.74, which is 36.80 Mb. It contains 341 scaffolds and 11,647 predicted protein-coding genes. As reported for plant-pathogenic Pythium species, RXLR-type effector sequences are absent

    Role of miRNAs in Legume Crops in Response to Biotic and Abiotic Stress

    No full text
    Legumes are special group of nitrogen-fixing plants that are an essential component of cropping system and important source of food/feed for human/animal consumption. Therefore it is timely to review the current evidence of the benefits of legumes for human health. However Like other crops, the productivity of legumes is threatened by abiotic stresses caused due to global climate change. Abiotic stress tolerance is complex trait involving a suite of genes, the expression of which is controlled by transcription factors including gene/polypeptide sequences. The discovery of microRNAs (miRNAs) as gene regulators has led to a paradigm shift in the understanding of post-transcriptional gene regulation in plants and animals. In addition to protein coding genes, microRNAs (miRNAs) have emerged as important players in plant stress responses. Initial clues suggesting that miRNAs are involved in plant stress responses stem from studies showing stress regulation of miRNAs and target predictions for some miRNAs. Subsequent studies have demonstrated an important functional role for these miRNAs in abiotic stress responses. This review summarizes the current knowledge on the role of different miRNAs in response to main abiotic stresses in legumes

    Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    No full text
    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world’s ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches

    Long-term agricultural management impacts arbuscular mycorrhizal fungi more than short-term experimental drought

    Get PDF
    Agricultural management practices and extreme weather events associated with climate change can influence the diversity and abundance of arbuscular mycorrhizal fungi (AMF) with potential consequences for crop production. However, the importance of the interactive effects of long-term agricultural management and extreme weather events on AMF communities in agricultural soils is not yet fully explored. A short-term drought experiment with rainout-shelters was performed in winter wheat fields in a long-term agricultural trial with organic (biodynamic) and conventional management practices. During four months of the winter wheat growing period (March–June 2017), the rainout-shelters reduced the ambient precipitation by 65% on average. At two sampling dates, the AMF diversity and community composition were assessed using a single-molecule real-time (SMRT) DNA sequencing. A total of 955 amplicon sequence variants (ASVs), belonging to twelve genera were identified. The long-term farming systems and the short-term experimental drought did not affect AMF ASV diversity levels. The AMF community composition at the genus level differed between the organic and the conventional farming systems, but no distinctive communities were found in response to the experimental drought. The three most abundant genera Acaulospora, Paraglomus and Funneliformis were correlated to the two farming practices. Our study demonstrates that AMF communities in agricultural soils are responsive to long-term farming systems, and are resistant to one short-term summer drought event
    corecore