5 research outputs found
Recommended from our members
Polyelectrolyte nanocontainers: controlled binding and release of indomethacin
Herein, polyelectrolyte capsules containing anti-inflammatory drug indomethacin were formed using layer-by-layer strategy, which involves alternative deposition of oppositely charged polyelectrolytes, such as poly(acrylic acid) and poly(ethyleneimine) (or chitosan) onto the drug substrate. Two variants of encapsulation have been implemented: direct deposition of polyelectrolytes onto indomethacin dispersed in water at рН 6, and preliminary formation of soft matrix by solubilization of indomethacin in micellar solutions of cationic surfactants. The inclusion of indomethacin into nanosized polyelectrolyte capsules (hydrodynamic diameter of three- and five-layer capsules is 90–180 nm) has given a new form of indomethacin with the drug content of 0.20–0.25%, which exceeds its limiting solubility in water nearly by the factor of 40. The choice of materials and procedures used for preparation of capsules, as well as the number of polyelectrolyte layers that form shell has provided the control of the drug release from capsule and resulted in the design of pharmaceutical dosage forms with long-lasting effect
Antimicrobial Properties and Cytotoxic Effect of Imidazolium Geminis with Tunable Hydrophobicity
Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor. Among dicationic surfactants, decyl derivatives showed highest antimicrobial effect, while for monocationic analogues, the maximum activity is observed in the case of tetradecyl tail. The leading compounds are 2–4 times higher in activity compared to reference antibiotics and prove effective against resistant strains. It has been shown that the antimicrobial effect is not associated with the destruction of the cell membrane, but is due to specific interactions of surfactants and cell components. Importantly, they show strong selectivity for microorganism cells while being of low harm to healthy human cells, with a SI ranging from 30 to 100
Enhanced Herbicidal Action of Clopyralid in the Form of a Supramolecular Complex with a Gemini Surfactant
Surfactants are often added to herbicidal formulations to improve the delivery of the herbicide into plants. In this study a new herbicidal formulation was formed based on the clopyralid with 0.01% gemini surfactant hexanediyl-1,6-bis(dimethylcetylammonium bromide) (16-6-16) as an adjuvant. The increase in the efficiency of the formulation was associated with the formation of a supramolecular surfactant–herbicide complex (SMC), which has improved wetting properties, provides high clopyralid concentration on the leaf surface, and has higher penetrating ability compared to surfactant-free clopyralid solutions. Comparison of the herbicidal action of clopyralid–16-6-16 SMC with two commercial formulations of the same concentration of clopyralid was performed using digital phenotyping of the model weed plant cocklebur (Xanthium strumarium). Based on the spectral indices NDVI (normalized differential vegetation index) and PSRI (plant senescence reflectance index) and key morphological indexes of the leaf angle, plant height, and leaf area, we showed that clopyralid formulations strongly affected the plants and that the strongest and most durable effect was exerted by the clopyralid–16-6-16 SMC formulation