98 research outputs found

    Missense Mutation in Exon 2 of SLC36A1 Responsible for Champagne Dilution in Horses

    Get PDF
    Champagne coat color in horses is controlled by a single, autosomal-dominant gene (CH). The phenotype produced by this gene is valued by many horse breeders, but can be difficult to distinguish from the effect produced by the Cream coat color dilution gene (CR). Three sires and their families segregating for CH were tested by genome scanning with microsatellite markers. The CH gene was mapped within a 6 cM region on horse chromosome 14 (LOD = 11.74 for θ = 0.00). Four candidate genes were identified within the region, namely SPARC [Secreted protein, acidic, cysteine-rich (osteonectin)], SLC36A1 (Solute Carrier 36 family A1), SLC36A2 (Solute Carrier 36 family A2), and SLC36A3 (Solute Carrier 36 family A3). SLC36A3 was not expressed in skin tissue and therefore not considered further. The other three genes were sequenced in homozygotes for CH and homozygotes for the absence of the dilution allele (ch). SLC36A1 had a nucleotide substitution in exon 2 for horses with the champagne phenotype, which resulted in a transition from a threonine amino acid to an arginine amino acid (T63R). The association of the single nucleotide polymorphism (SNP) with the champagne dilution phenotype was complete, as determined by the presence of the nucleotide variant among all 85 horses with the champagne dilution phenotype and its absence among all 97 horses without the champagne phenotype. This is the first description of a phenotype associated with the SLC36A1 gene

    LC/MS-Based Quantitative Proteomic Analysis of Paraffin-Embedded Archival Melanomas Reveals Potential Proteomic Biomarkers Associated with Metastasis

    Get PDF
    BACKGROUND: Melanoma metastasis status is highly associated with the overall survival of patients; yet, little is known about proteomic changes during melanoma tumor progression. To better understand the changes in protein expression involved in melanoma progression and metastasis, and to identify potential biomarkers, we conducted a global quantitative proteomic analysis on archival metastatic and primary melanomas. METHODOLOGY AND FINDINGS: A total of 16 metastatic and 8 primary cutaneous melanomas were assessed. Proteins were extracted from laser captured microdissected formalin fixed paraffin-embedded archival tissues by liquefying tissue cells. These preparations were analyzed by a LC/MS-based label-free protein quantification method. More than 1500 proteins were identified in the tissue lysates with a peptide ID confidence level of >75%. This approach identified 120 significant changes in protein levels. These proteins were identified from multiple peptides with high confidence identification and were expressed at significantly different levels in metastases as compared with primary melanomas (q-Value<0.05). CONCLUSIONS AND SIGNIFICANCE: The differentially expressed proteins were classified by biological process or mapped into biological system networks, and several proteins were implicated by these analyses as cancer- or metastasis-related. These proteins represent potential biomarkers for tumor progression. The study successfully identified proteins that are differentially expressed in formalin fixed paraffin-embedded specimens of metastatic and primary melanoma

    Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization.

    Get PDF
    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made

    Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic

    Get PDF
    PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)—which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core—are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW–associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi–like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid

    Temporary Closure of the Open Abdomen: A Systematic Review on Delayed Primary Fascial Closure in Patients with an Open Abdomen

    Get PDF
    Background This study was designed to systematically review the literature to assess which temporary abdominal closure (TAC) technique is associated with the highest delayed primary fascial closure (FC) rate. In some cases of abdominal trauma or infection, edema or packing precludes fascial closure after laparotomy. This "open abdomen'' must then be temporarily closed. However, the FC rate varies between techniques. Methods The Cochrane Register of Controlled Trials, MEDLINE, and EMBASE databases were searched until December 2007. References were checked for additional studies. Search criteria included (synonyms of) "open abdomen,'' "fascial closure,'' "vacuum,'' "reapproximation,'' and "ventral hernia.'' Open abdomen was defined as "the inability to close the abdominal fascia after laparotomy.'' Two reviewers independently extracted data from original articles by using a predefined checklist. Results The search identified 154 abstracts of which 96 were considered relevant. No comparative studies were identified. After reading them, 51 articles, including 57 case series were included. The techniques described were vacuum-assisted closure (VAC; 8 series), vacuum pack (15 series), artificial burr (4 series), Mesh/sheet (16 series), zipper (7 series), silo (3 series), skin closure (2 series), dynamic retention sutures (DRS), and loose packing (1 series each). The highest FC rates were seen in the artificial burr (90%), DRS (85%), and VAC (60%). The lowest mortality rates were seen in the artificial burr (17%), VAC (18%), and DRS (23%). Conclusions These results suggest that the artificial burr and the VAC are associated with the highest FC rates and the lowest mortality rate
    corecore