3 research outputs found

    On-Site Bridge Inspection by 950 keV/3.95 MeV Portable X-Band Linac X-Ray Sources

    Get PDF
    Many bridges around the world face aging problems and degradation of structural strength. Visual and hammering sound inspections are under way, but the status of inner reinforced iron rods and prestressed concrete (PC) wires has not yet been confirmed. Establishing a diagnosis method for bridges based on X-ray visualization is required to evaluate the health of bridges accurately and to help with the rationalization of bridge maintenance. We developed 950 keV/3.95 MeV X-band electron linac-based X-ray sources for on-site bridge inspection and visualized the inner structure of a lower floor slab. The information regarding wire conditions by X-ray results was used for the structural analysis of a bridge to evaluate its residual strength and sustainability. For more precise inspection of wire conditions, we applied three-dimensional image reconstruction methods for bridge mock-up samples. Partial-angle computed tomography (CT) and tomosynthesis provided cross-sectional images of the samples at 1 mm resolutions. Image processing techniques such as the curvelet transform were applied to evaluate diameter of PC wires by suppressing noise. Technical guidelines of bridge maintenance using the 950 keV/3.95 MeV X-ray sources are proposed. We plan to offer our technique and guidelines for safer and more reliable maintenance of bridges around the world

    Highway PC Bridge Inspection by 3.95 MeV X-Ray/Neutron Source

    Get PDF
    We have developed portable 950 keV/3.95 MeV X-ray/neutron sources and applied them to inspection of PC concrete thicker than 200 mm within reasonable measuring time of seconds - minutes. T-girder-, Box- and slab- bridges are considered. Now we are to start X-ray transmission inspection for highway PC bridge (box) by using 3.95 MeV X-ray sources in Japan in 2020. By obtaining X-ray transmission images of no-grout-filling in PC sheath and thinning of PC wires, we plan to carry out numerical structural analysis to evaluate the degradation of strength. Finally, we are going to propose a technical guideline of nondestructive evaluation (NDE) of PC bridges by taking account of both X-ray inspection and structural analysis. Further, we are trying to detect rainwater detection in PC sheath, and asphalt and floor slab by the 3.95 MeV neutron source. This is expected to be an early degradation inspection. We have done preliminary experiments on X-ray transmission imaging of PC wires and on-grout-filling in the same height PCs in 450–750 mm thick concretes. Moreover, neutron back scattering detection of water in PC sheath is also explained
    corecore