7,234 research outputs found
Virtual Reality Visualization by CAVE with VFIVE and VTK
The CAVE-type virtual reality (VR) system was introduced for scientific
visualization of large scale data in the plasma simulation community about a
decade ago. Since then, we have been developing a VR visualization software,
VFIVE, for general CAVE systems. Recently, we have integrated an open source
visualization library, the Visualization Toolkit (VTK), into VFIVE. Various
visualization methods of VTK can be incorporated and used interactively in
VFIVE.Comment: 3 pages, 3 figures, submitted to J. Plasma Physcs (special issue for
19th ICNSP
Modular Verification of Interrupt-Driven Software
Interrupts have been widely used in safety-critical computer systems to
handle outside stimuli and interact with the hardware, but reasoning about
interrupt-driven software remains a difficult task. Although a number of static
verification techniques have been proposed for interrupt-driven software, they
often rely on constructing a monolithic verification model. Furthermore, they
do not precisely capture the complete execution semantics of interrupts such as
nested invocations of interrupt handlers. To overcome these limitations, we
propose an abstract interpretation framework for static verification of
interrupt-driven software that first analyzes each interrupt handler in
isolation as if it were a sequential program, and then propagates the result to
other interrupt handlers. This iterative process continues until results from
all interrupt handlers reach a fixed point. Since our method never constructs
the global model, it avoids the up-front blowup in model construction that
hampers existing, non-modular, verification techniques. We have evaluated our
method on 35 interrupt-driven applications with a total of 22,541 lines of
code. Our results show the method is able to quickly and more accurately
analyze the behavior of interrupts.Comment: preprint of the ASE 2017 pape
Structure and Stability of Magnetic Fields in Solar Active Region12192 Based on Nonlinear Force-Free Field Modeling
We analyze a three-dimensional (3D) magnetic structure and its stability in
large solar active region(AR) 12192, using the 3D coronal magnetic field
constructed under a nonlinear force-free field (NLFFF) approximation. In
particular, we focus on the magnetic structure that produced an X3.1-class
flare which is one of the X-class flares observed in AR 12192. According to our
analysis, the AR contains multiple-flux-tube system, {\it e.g.}, a large flux
tube, both of whose footpoints are anchored to the large bipole field, under
which other tubes exist close to a polarity inversion line (PIL). These various
flux tubes of different sizes and shapes coexist there. In particular, the
later are embedded along the PIL, which produces a favorable shape for the
tether-cutting reconnection and is related to the X-class solar flare. We
further found that most of magnetic twists are not released even after the
flare, which is consistent with the fact that no observational evidence for
major eruptions was found. On the other hand, the upper part of the flux tube
is beyond a critical decay index, essential for the excitation of torus
instability before the flare, even though no coronal mass ejections (CMEs) were
observed. We discuss the stability of the complicated flux tube system and
suggest the reason for the existence of the stable flux tube. In addition, we
further point out a possibility for tracing the shape of flare ribbons, on the
basis of a detailed structural analysis of the NLFFF before a flare.Comment: 24 pages, 9 figures, accepted for publication in The Astrophysical
Journa
- …