1,483 research outputs found

    Determination of the Mott insulating transition by the multi-reference density functional theory

    Full text link
    It is shown that a momentum-boost technique applied to the extended Kohn-Sham scheme enables the computational determination of the Mott insulating transition. Self-consistent solutions are given for correlated electron systems by the first-principles calculation defined by the multi-reference density functional theory, in which the effective short-range interaction can be determined by the fluctuation reference method. An extension of the Harriman construction is made for the twisted boundary condition in order to define the momentum-boost technique in the first-principles manner. For an effectively half-filled-band system, the momentum-boost method tells that the period of a metallic ground state by the LDA calculation is shortened to the least period of the insulating phase, indicating occurrence of the Mott insulating transition.Comment: 5 pages, 1 figure, to appear in J. Phys. Condens. Matte

    A self-consistent first-principles calculation scheme for correlated electron systems

    Full text link
    A self-consistent calculation scheme for correlated electron systems is created based on the density-functional theory (DFT). Our scheme is a multi-reference DFT (MR-DFT) calculation in which the electron charge density is reproduced by an auxiliary interacting Fermion system. A short-range Hubbard-type interaction is introduced by a rigorous manner with a residual term for the exchange-correlation energy. The Hubbard term is determined uniquely by referencing the density fluctuation at a selected localized orbital. This strategy to obtain an extension of the Kohn-Sham scheme provides a self-consistent electronic structure calculation for the materials design. Introducing an approximation for the residual exchange-correlation energy functional, we have the LDA+U energy functional. Practical self-consistent calculations are exemplified by simulations of Hydrogen systems, i.e. a molecule and a periodic one-dimensional array, which is a proof of existence of the interaction strength U as a continuous function of the local fluctuation and structural parameters of the system.Comment: 23 pages, 8 figures, to appear in J. Phys. Condens. Matte

    Redox functionality mediated by adsorbed oxygen on a Pd-oxide film over a Pd(100) thin structure: A first-principles study

    Full text link
    Stable oxygen sites on a PdO film over a Pd(100) thin structures with a (sqrt{5} times sqrt{5}) R27^circ surface-unit cell are determined using the first-principles electronic structure calculations with the generalized gradient approximation. The adsorbed monatomic oxygen goes to a site bridging two 2-fold-coordinated Pd atoms or to a site bridging a 2-fold-coordinated Pd atom and a 4-fold-coordinated Pd atom. Estimated reaction energies of CO oxidation by reduction of the oxidized PdO film and N_2O reduction mediated by oxidation of the PdO film are exothermic. Motion of the adsorbed oxygen atom between the two stable sites is evaluated using the nudged elastic band method, where an energy barrier for a translational motion of the adsorbed oxygen may become sim 0.45 eV, which is low enough to allow fluxionality of the surface oxygen at high temperatures. The oxygen fluxionality is allowed by existence of 2-fold-coordinated Pd atoms on the PdO film, whose local structure has similarity to that of Pd catalysts for the Suzuki-Miyaura cross coupling. Although NO_x (including NO_2 and NO) reduction is not always catalyzed only by the PdO film, we conclude that there may happen continual redox reactions mediated by oxygen-adsorbed PdO films over a Pd surface structure, when the influx of NO_x and CO continues, and when the reaction cycle is kept on a well-designed oxygen surface.Comment: 15 pages, 6 figures, submitted to J. Phys. Condens. Matte

    Scaling Relation for Excitation Energy Under Hyperbolic Deformation

    Full text link
    We introduce a one-parameter deformation for one-dimensional (1D) quantum lattice models, the hyperbolic deformation, where the scale of the local energy is proportional to cosh lambda j at the j-th site. Corresponding to a 2D classical system, the deformation does not strongly modify the ground state. In this situation, the effective Hamiltonian of the quantum system shows that the quasi particle is weakly bounded around the center of the system. By analyzing this binding effect, we derive scaling relations for the mean-square width of confinement, the energy correction with respect to the excitation gap \Delta, and the deformation parameter λ\lambda. This finite-size scaling allows us to investigate excitation gap of 1D non-deformed bulk quantum systems.Comment: 9 pages, 5 figure

    Spin-twist driven persistent current in a strongly correlated two-dimensional electron system: a manifestation of the gauge field

    Full text link
    A persistent current, coupled with the spin state, of purely many-body origin is shown to exist in Nagaoka's ferromagnetic state in two dimensions (2D). This we regard as a manifestation of a gauge field, which comes from the surrounding spin configuration and acts on the hole motion, being coupled to the Aharonov-Bohm flux. This provides an example where the electron-electron interaction exerts a profound effect involving the spins in clean two-dimensional lattice systems in sharp contrast to continuum or spinless fermion systems.Comment: 11 pages, typeset using Revtex 3.0, Phys. Rev. B in press, 2 figures available upon request at [email protected]
    corecore