19 research outputs found

    Insights into the high-pressure behaviour of solid bromine from hybrid DFT calculations

    Full text link
    Understanding the properties of molecular solids at high pressure is a key element in the development of new solid-state theories. However, the most commonly used generalized-gradient approximation (GGA) of the density functional theory (DFT) often fails to correctly describe the behavior of these systems at high pressure. Here we utilize the hybrid DFT approach to model the properties of elemental bromine at high pressure. The calculations reproduce in very good agreement with experiment the properties of the molecular phase I (Cmca symmetry) and its pressure-induced transition into the non-molecular phase II (Immm). The experimentally yet unobserved transition into phase III (I4/mmm) is predicted to occur at 128 GPa, followed by subsequent formation of an fcc lattice at 188 GPa. Analysis of the structure and electronic properties of the modelled phases indicates that the molecular Cmca phase becomes metallic just at the borderline of its stability, and that both Immm and I4/mmm phases are metallic and quasi-2D. Finally, we show that the incommensurate phases of bromine postulated from experiment are transient species which can be viewed as intermediates in the dissociation process occurring at the boundary of the transition from phase I to phase II

    Phase Stability of Chloroform and Dichloromethane at High Pressure

    No full text
    Chloroform (CHCl3) and dichloromethane (CH2Cl2) are model systems for the study of intermolecular interactions, such as hydrogen bonds and halogen–halogen interactions. Here we report a joint computational (density-functional perturbation theory (DFPT) modelling) and experimental (Raman scattering) study on the behaviour of the crystals of these compounds up to a pressure of 32 GPa. Comparing the experimental information on the Raman band positions and intensities with the results of calculations enabled us to characterize the pressure-induced evolution of the crystal structure of both compounds. We find that the previously proposed P63 phase of CHCl3 is in fact a metastable structure, and that up to 32 GPa the ambient-pressure Pnma structure is the ground state polymorph of this compound. For CH2Cl2 we confirm the stability of the ambient-pressure Pbcn structure up to 32 GPa. We show that the high-pressure evolution of the crystal geometry of CHCl3 in the Pnma structure is a result of the subtle balance between dipole–dipole interactions, hydrogen bonds and Cl···Cl contacts. For CH2Cl2 (Pbcn structure) the dipole–dipole interactions and hydrogen bonds are the main factors influencing the pressure-induced changes in the geometry

    The Jahn-Teller Distortion at High Pressure: The Case of Copper Difluoride

    No full text
    The opposing effects of high pressure (in the GPa range) and the Jahn-Teller distortion led to many intriguing phenomena which are still not well understood. Here we report a combined experimental-theoretical study on the high-pressure behavior of an archetypical Jahn-Teller system, copper difluoride (CuF2). At ambient conditions this compound adopts a distorted rutile structure of P21/c symmetry. Raman scattering measurements performed up to 29 GPa indicate that CuF2 undergoes a phase transition at 9 GPa. We assign the novel high-pressure phase to a distorted fluorite structure of Pbca symmetry, iso-structural with the ambient-pressure structure of AgF2. Density functional theory calculations indicate that the Pbca structure should transform to a non-centrosymmetric Pca21 polymorph above 30 GPa, which, in turn, should be replaced by a cotunnite phase (Pnma symmetry) at 72 GPa. The elongated octahedral coordination of the Cu2+ cation persists up to the Pca21–Pnma transition upon which it is replaced by a capped trigonal prism geometry, still bearing signs of a Jahn-Teller distortion. The high-pressure phase transitions of CuF2 resembles those found for difluorides of transition metals of similar radius (MgF2, ZnF2, CoF2), although with a much wider stability range of the fluorite-type structures, and lower dimensionality of the high-pressure polymorphs. Our calculations indicate no region of stability of a nanotubular polymorph observed for the related AgF2 system

    Hydrogen-Bonded Cyclic Dimers at Large Compression: The Case of 1H-pyrrolo[3,2-h]quinoline and 2-(2′-pyridyl)pyrrole

    No full text
    1H-pyrrolo[3,2-h]qinoline (PQ) and 2-(2′-pyridyl)pyrrole (PP) are important systems in the study of proton-transfer reactions. These molecules possess hydrogen bond donor (pyrrole) and acceptor (pyridine) groups, which leads to the formation of cyclic dimers in their crystals. Herein, we present a joint experimental (Raman scattering) and computational (DFT modelling) study on the high-pressure behaviour of PQ and PP molecular crystals. Our results indicate that compression up to 10 GPa (100 kbar) leads to considerable strengthening of the intermolecular hydrogen bond within the cyclic dimers. However, the intramolecular N–H∙∙∙N interaction is either weakly affected by pressure, as witnessed in PQ, or weakened due to compression-induced distortions of the molecule, as was found for PP. Therefore, we propose that the compression of these systems should facilitate double proton transfer within the cyclic dimers of PQ and PP, while intramolecular transfer should either remain unaffected (for PQ) or weakened (for PP)
    corecore