4,835 research outputs found

    Quantitative Phase Field Model of Alloy Solidification

    Full text link
    We present a detailed derivation and thin interface analysis of a phase-field model that can accurately simulate microstructural pattern formation for low-speed directional solidification of a dilute binary alloy. This advance with respect to previous phase-field models is achieved by the addition of a phenomenological "antitrapping" solute current in the mass conservation relation [A. Karma, Phys. Rev. Lett 87, 115701 (2001)]. This antitrapping current counterbalances the physical, albeit artificially large, solute trapping effect generated when a mesoscopic interface thickness is used to simulate the interface evolution on experimental length and time scales. Furthermore, it provides additional freedom in the model to suppress other spurious effects that scale with this thickness when the diffusivity is unequal in solid and liquid [R. F. Almgren, SIAM J. Appl. Math 59, 2086 (1999)], which include surface diffusion and a curvature correction to the Stefan condition. This freedom can also be exploited to make the kinetic undercooling of the interface arbitrarily small even for mesoscopic values of both the interface thickness and the phase-field relaxation time, as for the solidification of pure melts [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The performance of the model is demonstrated by calculating accurately for the first time within a phase-field approach the Mullins-Sekerka stability spectrum of a planar interface and nonlinear cellular shapes for realistic alloy parameters and growth conditions.Comment: 51 pages RevTeX, 5 figures; expanded introduction and discussion; one table and one reference added; various small correction

    Feedback control of unstable cellular solidification fronts

    Get PDF
    We present a numerical and experimental study of feedback control of unstable cellular patterns in directional solidification (DS). The sample, a dilute binary alloy, solidifies in a 2D geometry under a control scheme which applies local heating close to the cell tips which protrude ahead of the other. For the experiments, we use a real-time image processing algorithm to track cell tips, coupled with a movable laser spot array device, to heat locally. We show, numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable, and the spacing becomes uniform through feedback control which is maintained with minimal heating.Comment: 4 pages, 4 figures, 1 tabl

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations

    Get PDF
    The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an "oriented-to-misoriented transition” (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbine

    "Честный" и "нечестный" маркетинг: пример DeSheli

    Get PDF
    В статье рассматриваются критерии "честного" и "нечестного" маркетинга, выделены основные принципы маркетинга, описаны методы "недобросовестного" маркетинга, приводятся приемы "нечестного" маркетинга, используемые компанией DeSheli, приведены рекомендации, как не попасться на нечестных маркетологов, а также, если вы поддались провокациям и оформили кредит на косметику, но после того осознали, что совершили ошибку, несколько правил, как вернуть деньги

    Экология в жизни современных спортсменов

    Get PDF
    Основным свойством экологии человека является ее естественное состояние, которое отражает индивидуально приспособительные реакции каждого человека в обществе и способность его наиболее качественно осуществлять социально-биологическую функцию в определенных условиях и в конкретной местности. Для каждого человека качество популяционного здоровья отражается степенью вероятности на протяжении всей жизни человека, а также характеризует его возможности и жизненные позиции как социального организма в целом

    On the role of confinement on solidification in pure materials and binary alloys

    Full text link
    We use a phase-field model to study the effect of confinement on dendritic growth, in a pure material solidifying in an undercooled melt, and in the directional solidification of a dilute binary alloy. Specifically, we observe the effect of varying the vertical domain extent (δ\delta) on tip selection, by quantifying the dendrite tip velocity and curvature as a function of δ\delta, and other process parameters. As δ\delta decreases, we find that the operating state of the dendrite tips becomes significantly affected by the presence of finite boundaries. For particular boundary conditions, we observe a switching of the growth state from 3-D to 2-D at very small δ\delta, in both the pure material and alloy. We demonstrate that results from the alloy model compare favorably with those from an experimental study investigating this effect.Comment: 13 pages, 9 figures, 3 table

    Isolation and Molecular Characterization of a Novel Cytopathogenic Paramyxovirus from Tree Shrews

    Get PDF
    AbstractA cytopathic infectious agent was isolated from the kidneys of an apparently healthy tree shrew (Tupaia belangeri) that had been captured in the area around Bangkok. The infectivity was propagated in Tupaia fibroblast and kidney cell cultures. Paramyxovirus-like pleomorphic enveloped particles and helical nucleocapsids were observed by electron microscopy and accordingly the infectious agent was termed Tupaia paramyxovirus (TPMV). However, no serological cross-reactions were detected between TPMV and known paramyxoviruses. For the molecular characterization of TPMV an experimental strategy that allows the random-primed synthesis of relatively large cDNA molecules from viral genomic RNA was applied. Nucleotide sequence analysis of a TPMV-specific cDNA fragment (1544 bp) revealed two nonoverlapping partial open reading frames corresponding to paramyxoviral N and P transcription units. Using modified rapid amplification of cDNA ends techniques, a substantial contiguous portion of the viral genome (4065 nt) was elucidated including the complete N and P/V/C genes. The coding strategy of TPMV as well as significant amino acid sequence homologies clearly indicates an evolutionary relationship between TPMV and members of the genus Morbillivirus. Highest homologies were detected between TPMV and Hendra virus (equine morbillivirus), which recently emerged in Australia, causing outbreaks of fatal respiratory and neurological disease in horses and humans

    Inelastic interaction mean free path of negative pions in tungsten

    Get PDF
    The inelastic interaction mean free paths lambda of 5, 10, and 15 GeV/c pions were measured by determining the distribution of first interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi2 distribution is used to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy was observed. In tungsten, lambda for pions is 206 plus or minus 6 g/sq cm
    corecore