124 research outputs found

    Neutrino Mass Constraints on µ Decay and pi0-->nu[overline nu]

    Get PDF
    In this Letter, we show that upper limits on the neutrino mass translate into upper limits on the class of neutrino-matter interactions that can generate loop corrections to the neutrino mass matrix. We apply our results to µ and pi decays and derive model-independent limits on six of the ten parameters used to parametrize contributions to µ decay that do not belong to the standard model. These upper limits provide improved constraints on the five Michel parameters, rho,xi[prime],xi[prime][prime],alpha,alpha[prime], that exceed Particle Data Group constraints by at least one order of magnitude. For pi0-->nu[overline nu] we find, for the branching ratio, B(pi0-->nu[overline nu])<10^-10

    Supersymmetric Effects in Parity-Violating Deep Inelastic Electron-Nucleus Scattering

    Full text link
    We compute the supersymmetric (SUSY) corrections to the parity-violating, deep inelastic electron-deuteron asymmetry. Working with the Minimal Supersymmetric Standard Model (MSSM) we consider two cases: R parity conserving and R parity-violating. Under these scenarios, we compare the SUSY effects with those entering other parity-violating observables. For both cases of the MSSM, we find that the magnitude of the SUSY corrections can be as large as about 1% and that they are strongly correlated with the effects on other parity-violating observables. A comparison of various low-energy parity-violating observables thus provides a potentially interesting probe of SUSY.Comment: 12 pages, 5 figure

    Spatial Variation of the Fine-Structure Parameter and the Cosmic Microwave Background

    Get PDF
    We study the effects on cosmic microwave background (CMB) temperature and polarization anisotropies of spatial fluctuations of the fine-structure parameter between causally disconnected regions of the Universe at the time of recombination. Analogous to weak gravitational lensing, in addition to modifying the mean power spectra and inducing a curl component (B mode) to the polarization, spatial fluctuations of the fine-structure parameter induce higher-order (non-Gaussian) temperature and polarization correlations in the CMB. We calculate these effects for the general case of arbitrary correlation between temperature fluctuations and fine-structure parameter fluctuations, and show the results for a model where these two types of fluctuations are uncorrelated. The formalism we present here may also be applied to other modifications of recombination physics that do not significantly alter the evolution of the dominant density perturbations. We discuss the constraints on the effective Lagrangian for variable fine-structure parameter necessary to realize this scenario.Comment: 17 pages, 11 figures, minor changes and references added, published in Phys. Rev.

    Charged current universality problem and NuTeV anomaly: is SUSY to blame?

    Get PDF
    We compute the complete one-loop contributions to low-energy charged current weak interaction observables in the Minimal Supersymmetric Standard Model (MSSM). We obtain the constraints on the MSSM parameter space which arise when precision low-energy charged current (CC) data are analyzed in tandem with measurements of the muon anomaly. The data imply a pattern of mass splittings among first and second generation sleptons and squarks which contradicts predictions of widely used models for supersymmetry breaking mediation. We also discuss the implications of these constraints on the SUSY one-loop contributions to the (anti)neutrino-nucleus deep inelastic scattering. We consider the ratios of neutral current to charged current cross sections, and compare with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement. We discuss one scenario in which a right-sign effect arises, and show that it is ruled out by the CC data. We also study R parity-violating contributions. Although such effects can account for the violation of the first row CKM unitarity, they can not reproduce the NuTeV anomaly. If NuTeV anomaly is ultimately explained within the SM, R parity-violating resolution of the CKM unitarity problem can be tested in parity-violating electron scattering experiments at SLAC and TJNAF

    Parity-Violating Electron Scattering as a Probe of Supersymmetry

    Get PDF
    We compute the one-loop supersymmetric (SUSY) contributions to the weak charges of the electron (QWeQ_W^e) and proton (QWpQ_W^p) using the Minimal Supersymmetric Standard Model (MSSM). These q2=0q^2=0 vector couplings of the Z0Z^0-boson to fermions will be determined in two fixed-target, parity-violating electron scattering experiments. The SUSY loop contributions to QWpQ_W^p and QWeQ_W^e can be substantial, leading to several percent corrections to the Standard Model values for these quantities. We show that the relative signs of the SUSY loop effects on QWeQ_W^e and QWpQ_W^p are correlated and positive over nearly all of the MSSM parameter space, whereas inclusion of R-parity nonconserving interactions can lead to opposite sign relative shifts in the weak charges. Thus, a comparison of QWpQ_W^p and QWeQ_W^e measurements could help distinguish between different SUSY scenarios.Comment: 4 pages, 2 figure

    New Contribution to Scattering of Weakly Interacting Massive Particles on Nuclei

    Get PDF
    A weakly interacting massive particle (WIMP) is perhaps the most promising candidate for the dark matter in the Galactic halo. The WIMP detection rate in laboratory searches is fixed by the cross section for elastic WIMP-nucleus scattering. Here we calculate the contribution to this cross section from two-nucleon currents from pion exchange in the nucleus and show that it may, in some cases, be comparable to the one-nucleon current that has been considered in prior work and perhaps help resolve the discrepancies between the various direct dark-matter search experiments. We provide simple expressions that allow these new contributions to be included in current calculations

    Probing Supersymmetry with Neutral Current Scattering Experiments

    Get PDF
    We compute the supersymmetric contributions to the weak charges of the electron and proton in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R_nu and R_nubar at nu (nubar)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.Comment: 4 pages, contribution to the proceedings of CIPANP 2003 (May, 2003), New York Cit

    Radiative corrections in neutrino-deuterium disintegration

    Get PDF
    The radiative corrections of order alpha for the charged- and neutral-current neutrino-deuterium disintegration for energies relevant to the SNO experiment are evaluated. Particular attention is paid to the issue of the bremsstrahlung detection threshold. It is shown that the radiative corrections to the total cross section for the charged current reaction are independent of that threshold, as they must be for consistency, and amount to a slowly decreasing function of the neutrino energy E-nu, varying from about 4% at low energies to 3% at the end of the B-8 spectrum. The differential cross section corrections, on the other hand, do depend on the bremsstrahlung detection threshold. Various choices of the threshold are discussed. It is shown that for a realistic choice of the threshold and for the actual electron energy threshold of the SNO detector, the deduced B-8 nu(e) flux should be decreased by about 2%. The radiative corrections to the neutral-current reaction are also evaluated

    Dark-matter electric and magnetic dipole moments

    Get PDF
    We consider the consequences of a neutral dark-matter particle with a nonzero electric and/or magnetic dipole moment. Theoretical constraints, as well as constraints from direct searches, precision tests of the standard-model, the cosmic microwave background and matter power spectra, and cosmic gamma rays, are included. We find that a relatively light particle with mass between an MeV and a few GeV and an electric or magnetic dipole as large as ~3 x 10 to the -16 e cm (roughly 1.6 x 10 to the -5 ÎĽB) satisfies all experimental and observational bounds. Some of the remaining parameter space may be probed with forthcoming more sensitive direct searches and with the Gamma-Ray Large Area Space Telescope

    Neutrinoless Double Beta Decay and Lepton Flavor Violation

    Get PDF
    We point out that extensions of the Standard Model with low scale (~TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with GUT scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of \mu -> e \gamma and \mu -> e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments.Comment: 4 pages, 3 figure
    • …
    corecore