4 research outputs found

    Dry Anaerobic Co-Digestion Of Food Waste And Cattle Manure: Impact Of Total Solids, Substrate Ratio And Thermal Pre Treatment On Methane Yield And Quality Of Biomanure

    No full text
    The objective of the present study is to assess the impact of TS concentration, substrate mixing ratio (co digestion) and thermal pretreatment on biogas production, methane yield, VS reduction (%) and quality of bio-manure through dry anaerobic digestion (DAD) of food waste (FW) and cattle manure (CM). Results divulged that the optimum methane yield and biomanure of 0.18 and 0.21 m(3) CH4/(kg VS reduced) and 3.15 and 2.8 kg/kg waste was obtained from FW at TS of 25% and 30% at an HRT of 41 and 31 days respectively whereas it was 0.32 and 0.43m(3) CH4/(kg VS reduced) and 2.2 and 1.15 kg/kg waste from pretreated FW at an HRT of 16 and 20 days correspondingly. Improvement of methane from 62 to 81% was obtained due to thermal pretreatment. The highest nutrient recovery in terms of N, P, K was found to be 5.14, 2.6 and 3.2 respectively

    Process intensification with inline pre and post processing mechanism for valorization of poultry litter through high rate biomethanation technology: A full scale experience

    No full text
    High rate biomethanation technology based on anaerobic gas lift reactor (AGR) for the treatment of poultry litter (PL) has been demonstrated to generate biogas and digestate. The plant was installed and operated continuously for 95 weeks (September 2012 to June 2014) under ambient temperature conditions (in the range of 24-31 °C) for the treatment of 1000 kg of PL per day containing 254 kg of total solids and 220 kg of volatile solids. Biogas (68 m 3 /day) produced in the plant was successfully converted to electrical power (89 kWh/day) that was utilized to operate water pumps in the agricultural fields. The digestate (105 kg/day) was effectively employed in the nearby fields as an organic fertilizer. The plant was operated by establishing an intensified process mechanism incorporating inline pre and post processing unit assembly along with ammonia inhibition control mechanism. It is understood from the full scale experience of this plant that, decentralized off grid power generation from PL could be a remunerative option to poultry farmers

    New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527

    No full text
    In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation. Press mud contains an adequate amount of cellulose (22.3%) and hemicellulose (21.67%) on dry basis, and hence, it can be utilized for further acetone-butanol-ethanol (ABE) production. Drying experiments were conducted in the temperature range of 60–120 °C to circumvent microbial spoilage and enhance storability of press mud. Furthermore, acidic pretreatment variables, viz. sulfuric acid concentration, solid to liquid ratio, and time, were optimized using response surface methodology. The corresponding values were found to be 1.5% (v/v), 1:5 g/mL, and 15 min, respectively. In addition, detoxification studies were also conducted using activated charcoal, which removed almost 93–97% phenolics and around 98% furans, which are toxic to microorganisms during fermentation. Finally, the batch fermentation of detoxified press mud slurry (the sample dried at 100 °C and pretreated) using Clostridium acetobutylicum NRRL B-527 resulted in a higher butanol production of 4.43 g/L with a total ABE of 6.69 g/L.Peer reviewe
    corecore