13 research outputs found

    Topologically-protected single-photon sources with topological slow light photonic crystal waveguides

    Full text link
    Slow light waveguides are advantageous for implementing high-performance single-photon sources required for scalable operation of integrated quantum photonic circuits (IQPCs), though such waveguides are known to suffer from propagation loss due to backscattering. A way to overcome the drawback is to use topological photonics, in which robust waveguiding in topologically-protected optical modes has recently been demonstrated. Here, we report single-photon sources using single quantum dots (QDs) embedded in topological slow light waveguides based on valley photonic crystals. We observe Purcell-enhanced single-photon emission from a QD into a topological slow light mode with a group index over 20 and its robust propagation even under the presence of sharp bends. These results pave the way for the realization of robust and high-performance single-photon sources indispensable for IQPCs

    Coupling of a Single Tin-vacancy Center to a Photonic Crystal Cavity in Diamond

    Full text link
    We demonstrate optical coupling between a single tin-vacancy (SnV) center in diamond and a free-standing photonic crystal nanobeam cavity. The cavities are fabricated using quasi-isotropic etching and feature experimentally measured quality factors as high as ~11,000. We investigate the dependence of a single SnV center's emission by controlling the cavity wavelength using a laser-induced gas desorption technique. Under resonance conditions, we observe an intensity enhancement of the SnV emission by a factor of 12 and a 16-fold reduction of the SnV lifetime. Based on the large enhancement of the SnV emission rate inside the cavity, we estimate the Purcell factor for the SnV zero-phonon line to be 37 and the coupling efficiency of the SnV center to the cavity, the beta factor, to be 95%. Our work paves the way for the realization of quantum photonic devices and systems based on efficient photonic interfaces using the SnV color center in diamond

    High Q-factor diamond optomechanical resonators with silicon vacancy centers at millikelvin temperatures

    Full text link
    Phonons are envisioned as coherent intermediaries between different types of quantum systems. Engineered nanoscale devices such as optomechanical crystals (OMCs) provide a platform to utilize phonons as quantum information carriers. Here we demonstrate OMCs in diamond designed for strong interactions between phonons and a silicon vacancy (SiV) spin. Using optical measurements at millikelvin temperatures, we measure a linewidth of 13 kHz (Q-factor of ~440,000) for 6 GHz acoustic modes, a record for diamond in the GHz frequency range and within an order of magnitude of state-of-the-art linewidths for OMCs in silicon. We investigate SiV optical and spin properties in these devices and outline a path towards a coherent spin-phonon interface.Comment: 18 pages, 11 figure

    Engineering Phonon-Qubit Interactions using Phononic Crystals

    Full text link
    The ability to control phonons in solids is key for diverse quantum applications, ranging from quantum information processing to sensing. Often, phonons are sources of noise and decoherence, since they can interact with a variety of solid-state quantum systems. To mitigate this, quantum systems typically operate at milli-Kelvin temperatures to reduce the number of thermal phonons. Here we demonstrate an alternative approach that relies on engineering phononic density of states, drawing inspiration from photonic bandgap structures that have been used to control the spontaneous emission of quantum emitters. We design and fabricate diamond phononic crystals with a complete phononic bandgap spanning 50 - 70 gigahertz, tailored to suppress interactions of a single silicon-vacancy color center with resonant phonons of the thermal bath. At 4 Kelvin, we demonstrate a reduction of the phonon-induced orbital relaxation rate of the color center by a factor of 18 compared to bulk. Furthermore, we show that the phononic bandgap can efficiently suppress phonon-color center interactions up to 20 Kelvin. In addition to enabling operation of quantum memories at higher temperatures, the ability to engineer qubit-phonon interactions may enable new functionalities for quantum science and technology, where phonons are used as carriers of quantum information
    corecore