11 research outputs found

    Cardiac Fibroblast-Induced Pluripotent Stem Cell-Derived Exosomes as a Potential Therapeutic Mean for Heart Failure

    No full text
    The limited regenerative capacity of the injured myocardium leads to remodeling and often heart failure. Novel therapeutic approaches are essential. Induced pluripotent stem cells (iPSC) differentiated into cardiomyocytes are a potential future therapeutics. We hypothesized that organ-specific reprogramed fibroblasts may serve an advantageous source for future cardiomyocytes. Moreover, exosomes secreted from those cells may have a beneficial effect on cardiac differentiation and/or function. We compared RNA from different sources of human iPSC using chip gene expression. Protein expression was evaluated as well as exosome micro-RNA levels and their impact on embryoid bodies (EBs) differentiation. Statistical analysis identified 51 genes that were altered (p ≤ 0.05), and confirmed in the protein level, cardiac fibroblasts-iPSCs (CF-iPSCs) vs. dermal fibroblasts-iPSCs (DF-iPSCs). Several miRs were altered especially miR22, a key regulator of cardiac hypertrophy and remodeling. Lower expression of miR22 in CF-iPSCs vs. DF-iPSCs was observed. EBs treated with these exosomes exhibited more beating EBs p = 0.05. vs. control. We identify CF-iPSC and its exosomes as a potential source for cardiac recovery induction. The decrease in miR22 level points out that our CF-iPSC-exosomes are naïve of congestive heart cell memory, making them a potential biological source for future therapy for the injured heart

    Catecholaminergic Polymorphic Ventricular Tachycardia

    No full text
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare congenital arrhythmogenic disorder induced by physical or emotional stress. It mainly affects children and younger adults and is characterized by rapid polymorphic and bidirectional ventricular tachycardia. Symptoms can include dizziness, palpitations, and presyncope, which may progress to syncope, hypotonia, convulsive movements, and sudden cardiac death. CPVT is the result of perturbations in Ca ion handling in the sarcoplasmic reticulum of cardiac myocytes. Mutations in the cardiac ryanodine receptor gene and the calsequestrin isoform 2 gene are most commonly seen in familial CPVT patients. Under catecholaminergic stimulation, either mutation can result in an excess Ca load during diastole resulting in delayed after depolarization and subsequent arrhythmogenesis. The current first-line treatment for CPVT is β-blocker therapy. Other therapeutic interventions that can be used in conjunction with β-blockers include moderate exercise training, flecainide, left cardiac sympathetic denervation, and implantable cardioverter-defibrillators. Several potential therapeutic interventions, including verapamil, dantrolene, JTV519, and gene therapy, are also discussed
    corecore