16 research outputs found

    Neutron capture on gallium in the astrophysical s process using time of flight

    No full text
    The stellar nucleosynthesis of elements heavier than iron can primarily be attributed to neutron capture reactions in the s and r process. While the s process is considered to be well understood with regards to the stellar sites, phases and conditions where it occurs, nucleosynthesis networks still need accurate neutron capture cross sections with low uncertainties as input parameters. Their quantitative outputs for the isotopic abundances produced in the s process, coupled with the observable solar abundances, can be used to indirectly infer the expected r process abundances. The two stable gallium isotopes, 69Ga and 71Ga, have been shown in sensitivity studies to have considerable impact on the weak s process in massive stars. The available experimental data, mostly derived from neutron activation measurements for quasi-stellar neutron spectra at kBT = 25 keV, show disagreements up to a factor of three. Determining the differential neutron capture cross section can provide input data for the whole range of astrophysically relevant energies. To that end, a neutron time of flight experimental campaign at the n_TOF facility at CERN was performed for three months, using isotopically enriched samples of both isotopes. The data taken at the EAR1 experimental area covered a wide neutron energy range from thermal to several hundred keV. The respective differential and spectrum averaged neutron capture cross sections for 69Ga and 71Ga were determined in this thesis. They show good agreement with the evaluated cross sections for 71Ga, but reproduce the deviations from the evaluated data that other, more recent activation measurements showed for 69Ga.Die Nukleosynthese der meisten Elemente schwerer als Eisen in Sternen erfolgt durch Neutroneneinfangreaktionen im s- und r-Prozess. WĂ€hrend der s-Prozess bezĂŒglich der stellaren Szenarien, Brennphasen und Bedingungen, unter welchen er vorkommt, als gut verstanden gilt, erfordern Nukleosynthese Netzwerkrechnungen genaue Neutroneneinfangwirkungsquerschnitte als Eingabeparameter. Ihre quantitativen Ergebnisse der s-Prozess IsotopenhĂ€ufigkeiten, kombiniert mit den beobachtbaren solaren IsotopenhĂ€ufigkeiten, können genutzt werden, um die zu erwartenden r-Prozess-HĂ€ufigkeiten zu bestimmen. SensitivitĂ€tsstudien des schwachen s-Prozess in massiven Sternen haben gezeigt, dass die zwei stabilen Gallium Isotope, 69Ga und 71Ga, einen beachtlichen Einfluss auf diesen haben. Die verfĂŒgbare experimentelle Datenlage stammt primĂ€r aus Aktivierungsmessungen fĂŒr quasi-stellare Neutronenspektren bei kBT = 25 keV, und weist Unterschiede bis zu einem Faktor drei zueinander auf. Die Bestimmung der differenziellen Neutroneneinfangwirkungsquerschnitte ermöglicht es, Eingabeparameter fĂŒr den kompletten Bereich astrophysikalisch relevanter Energien zu generieren. Zu diesem Zweck wurde am n_TOF Experiment am CERN eine Flugzeitmessung ĂŒber drei Monate hinweg durchgefĂŒhrt. Die gemessenen Daten erstrecken sich ĂŒber einen Neutronenenergiebereich von thermischen Energien bis zu mehreren hundert keV. Die differenziellen und ĂŒber die jeweiligen stellaren Neutronenspektren gemittelten Wirkungsquerschnitte von 69Ga und 71Ga wurden in dieser Arbeit bestimmt. Sie zeigen gute Übereinstimmung mit den evaluierten Wirkungsquerschnitten fĂŒr 71Ga, reproduzieren aber die in kĂŒrzlich durchgefĂŒhrten Aktivierungsmessungen gefundenen Abweichungen von den evaluierten Daten fĂŒr 69Ga

    Gamma intensities for the ÎČ-decay of 97Zr

    No full text
    To determine the neutron flux in activation experiments, a commonly used monitor is zirconium and in particular the stable isotopes 94,96Zr. 96Zr is very sensitive to epithermal neutrons. Despite its widespread application, most gamma intensities of the radioactive neutron capture product, 97Zr, yield large uncertainties. With the help of a new Îł spectroscopy setup and GEANT simulations, we succeeded in determining a new set of Îł-ray intensities with significantly reduced uncertainties

    Direct reactions for nuclear astrophysics

    No full text
    The neutron activation technique is a well established method to measure neutron capture cross sections relevant for the s-process. The 7Li(p,n) reaction at Ep = 1912 keV is often used as a neutron source since the energy distribution of the emitted neutrons closely resembles a Maxwell-Boltzmann spectrum of kBT = 25 keV, mimicking the 22Ne(α,n) phase in TP-AGB stars. The weak s-process, which takes place in massive stars, can reach energies up to kBT = 90 keV. Neutron spectra corresponding to a Maxwell-Boltzmann distribution with kBT > 25 keV cannot be produced by the 7Li(p,n) reaction directly. We developed a method to obtain quasi-Maxwellian neutron capture cross sections over a wide energy range by combining a set of spectrum average cross sections measured at six different proton energies and distances between the lithium target and the sample. The measured spectrum averaged cross section can be used to calculate the Maxwellian-Averaged cross-section (MACS) from kBT = 25 keV to kBT = 90 keV. Over the last two years neutron capture cross sections on over 20 isotopes have been measured at Goethe University Frankfurt using this methodology. An overview of the current experimental method, challenges during data analysis and the first results are presented

    The n_TOF facility: neutron beams for challenging future measurements at CERN

    No full text
    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented

    Measurement of the 14N(n,p)14C cross section at the CERN n_TOF facility from sub-thermal energy to 800 keV

    No full text
    The 14N(n,p)14C reaction is of interest in neutron capture therapy, where nitrogen-related dose is the main component due to low-energy neutrons, and in astrophysics, where 14N acts as a neutron poison in the s-process. Several discrepancies remain between the existing data obtained in partial energy ranges: thermal energy, keV region and resonance region. Purpose: Measuring the 14N(n,p)14C cross section from thermal to the resonance region in a single measurement for the first time, including characterization of the first resonances, and providing calculations of Maxwellian averaged cross sections (MACS). Method: Time-of-flight technique. Experimental Area 2 (EAR-2) of the neutron time-of-flight (n_TOF) facility at CERN. 10B(n,α)7Li and 235U(n,f) reactions as references. Two detection systems running simultaneously, one on-beam and another off-beam. Description of the resonances with the R-matrix code sammy. Results: The cross section has been measured from sub-thermal energy to 800 keV resolving the two first resonances (at 492.7 and 644 keV). A thermal cross-section (1.809±0.045 b) lower than the two most recent measurements by slightly more than one standard deviation, but in line with the ENDF/B-VIII.0 and JEFF-3.3 evaluations has been obtained. A 1/v energy dependence of the cross section has been confirmed up to tens of keV neutron energy. The low energy tail of the first resonance at 492.7 keV is lower than suggested by evaluated values, while the overall resonance strength agrees with evaluations. Conclusions: Our measurement has allowed to determine the 14N(n,p) cross-section over a wide energy range for the first time. We have obtained cross-sections with high accuracy (2.5 %) from sub-thermal energy to 800 keV and used these data to calculate the MACS for kT = 5 to kT = 100 keV

    First measurement of 72Ge(n,Îł) at n_TOF

    No full text
    The slow neutron capture process (s-process) is responsible for producing about half of the elemental abundances heavier than iron in the universe. Neutron capture cross sections on stable isotopes are a key nuclear physics input for s-process studies. The 72Ge(n, Îł) cross section has an important influence on production of isotopes between Ge and Zr during s-process in massive stars and therefore experimental data are urgently required. 72Ge(n, Îł) was measured at the neutron time-of-flight facility n_TOF (CERN) for the first time at stellar energies. The measurement was performed using an enriched 72GeO2 sample at a flight path of 185m with a set of liquid scintillation detectors (C6D6). The motivation, experiment and current status of the data analysis are reported

    Fission program at n_TOF

    No full text
    Since its start in 2001 the n_TOF collaboration developed a measurement program on fission, in view of advanced fuels in new generation reactors. A special effort was made on measurement of cross sections of actinides, exploiting the peculiarity of the n_TOF neutron beam which spans a huge energy domain, from the thermal region up to GeV. Moreover fission fragment angular distributions have also been measured. An overview of the cross section results achieved with different detectors is presented, including a discussion of the 237Np case where discrepancies showed up between different detector systems. The results on the anisotropy of the fission fragments and its implication on the mechanism of neutron absorption, and in applications, are also shown

    Constraints on the dipole photon strength for the odd uranium isotopes

    No full text
    Background: The photon strength functions (PSFs) and nuclear level density (NLD) are key ingredients for calculation of the photon interaction with nuclei, in particular the reaction cross sections. These cross sections are important especially in nuclear astrophysics and in the development of advanced nuclear technologies. Purpose: The role of the scissors mode in the M1 PSF of (well-deformed) actinides was investigated by several experimental techniques. The analyses of different experiments result in significant differences, especially on the strength of the mode. The shape of the low-energy tail of the giant electric dipole resonance is uncertain as well. In particular, some works proposed a presence of the E1 pygmy resonance just above 7 MeV. Because of these inconsistencies additional information on PSFs in this region is of great interest. Methods: The Îł-ray spectra from neutron-capture reactions on the 234U, 236 U, and 238 U nuclei have been measured with the total absorption calorimeter of the n_TOF facility at CERN. The background-corrected sum-energy and multi-step-cascade spectra were extracted for several isolated s-wave resonances up to about 140 eV. Results: The experimental spectra were compared to statistical model predictions coming from a large selection of models of photon strength functions and nuclear level density. No combination of PSF and NLD models from literature is able to globally describe our spectra. After extensive search we were able to find model combinations with modified generalized Lorentzian (MGLO) E1 PSF, which match the experimental spectra as well as the total radiative widths. Conclusions: The constant temperature energy dependence is favored for a NLD. The tail of giant electric dipole resonance is well described by the MGLO model of the E1 PSF with no hint of pygmy resonance. The M1 PSF must contain a very strong, relatively wide, and likely double-resonance scissors mode. The mode is responsible for about a half of the total radiative width of neutron resonances and significantly affects the radiative cross section

    Measurement of the radiative capture cross section of the s-process branching points 204Tl and 171Tm at the n_TOF facility (CERN)

    No full text
    The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,Îł) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei

    The Nuclear Astrophysics program at n_TOF (CERN)

    No full text
    An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neutron sources and primordial nucleosynthesis
    corecore