264 research outputs found
Structural diversity in the type IV pili of multidrug-resistant Acinetobacter
Acinetobacter baumannii is a Gram-negative coccobacillus found primarily in hospital settings that has recently emerged as a source of hospital-acquired infections. A. baumannii expresses a variety of virulence factors, including type IV pili, bacterial extracellular appendages often essential for attachment to host cells. Here, we report the high resolution structures of the major pilin subunit, PilA, from three Acinetobacter strains, demonstrating thatA. baumannii subsets produce morphologically distinct type IV pilin glycoproteins. We examine the consequences of this heterogeneity for protein folding and assembly as well as host-cell adhesion by Acinetobacter. Comparisons of genomic and structural data with pilin proteins from other species of soil gammaproteobacteria suggest that these structural differences stem from evolutionary pressure that has resulted in three distinct classes of type IVa pilins, each found in multiple species
Altered Regulation of Striatal Neuronal N-Methyl-D-Aspartate Receptor Trafficking by Palmitoylation in Huntington Disease Mouse Model
N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic signaling, and alterations in the synaptic/extrasynaptic NMDAR balance affect neuronal survival. Studies have shown enhanced extrasynaptic GluN2B-type NMDAR (2B-NMDAR) activity in striatal neurons in the YAC128 mouse model of Huntington disease (HD), resulting in increased cell death pathway activation contributing to striatal vulnerability to degeneration. However, the mechanism(s) of altered GluN2B trafficking remains unclear. Previous work shows that GluN2B palmitoylation on two C-terminal cysteine clusters regulates 2B-NMDAR trafficking to the surface membrane and synapses in cortical neurons. Notably, two palmitoyl acyltransferases (PATs), zDHHC17 and zDHHC13, also called huntingtin-interacting protein 14 (HIP14) and HIP14-like (HIP14L), directly interact with the huntingtin protein (Htt), and mutant Htt disrupts this interaction. Here, we investigated whether GluN2B palmitoylation is involved in enhanced extrasynaptic surface expression of 2B-NMDARs in YAC128 striatal neurons and whether this process is regulated by HIP14 or HIP14L. We found reduced GluN2B palmitoylation in YAC128 striatum, specifically on cysteine cluster II. Consistent with that finding, the palmitoylation-deficient GluN2B Cysteine cluster II mutant exhibited enhanced, extrasynaptic surface expression in striatal neurons from wild-type mice, mimicking increased extrasynaptic 2B-NMDAR observed in YAC128 cultures. We also found that HIP14L palmitoylated GluN2B cysteine cluster II. Moreover, GluN2B palmitoylation levels were reduced in striatal tissue from HIP14L-deficient mice, and siRNA-mediated HIP14L knockdown in cultured neurons enhanced striatal neuronal GluN2B surface expression and susceptibility to NMDA toxicity. Thus, altered regulation of GluN2B palmitoylation levels by the huntingtin-associated PAT HIP14L may contribute to the cell death-signaling pathways underlying HD
Recommended from our members
Alcohol consumption and lung cancer risk: A pooled analysis from the International Lung Cancer Consortium and the SYNERGY study
Background: There is inadequate evidence to determine whether there is an effect of alcohol consumption on lung cancer risk. We conducted a pooled analysis of data from the International Lung Cancer Consortium and the SYNERGY study to investigate this possible association by type of beverage with adjustment for other potential confounders. Methods: Twenty one case-control studies and one cohort study with alcohol-intake data obtained from questionnaires were included in this pooled analysis (19,149 cases and 362,340 controls). Adjusted odds ratios (OR) or hazard ratios (HR) with corresponding 95% confidence intervals (CI) were estimated for each measure of alcohol consumption. Effect estimates were combined using random or fixed-effects models where appropriate. Associations were examined for overall lung cancer and by histological type. Results: We observed an inverse association between overall risk of lung cancer and consumption of alcoholic beverages compared to non-drinkers, but the association was not monotonic. The lowest risk was observed for persons who consumed 10-19.9 g/day ethanol (OR vs. non-drinkers = 0.78; 95% CI: 0.67, 0.91), where 1 drink is approximately 12-15 g. This J-shaped association was most prominent for squamous cell carcinoma (SCC). The association with all lung cancer varied little by type of alcoholic beverage, but there were notable differences for SCC. We observed an association with beer intake (OR for >= 20 g/day vs nondrinker = 1.42; 95% CI: 1.06, 1.90). Conclusions: Whether the non-monotonic associations we observed or the positive association between beer drinking and squamous cell carcinoma reflect real effects await future analyses and insights about possible biological mechanisms
Alcohol and lung cancer risk among never smokers: A pooled analysis from the international lung cancer consortium and the SYNERGY study
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136447/1/ijc30618-sup-0001-supptables.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136447/2/ijc30618_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136447/3/ijc30618.pd
A Role for Thrombospondin-1 Deficits in Astrocyte-Mediated Spine and Synaptic Pathology in Down's Syndrome
Down's syndrome (DS) is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology.Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1), an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes.These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions
Association of Marijuana Smoking with Oropharyngeal and Oral Tongue Cancers: Pooled Analysis from the INHANCE Consortium
The incidence of oropharyngeal and oral tongue cancers have increased over the last twenty years which parallels increased use of marijuana among individuals born after 1950
- …