42 research outputs found

    Carbofunctional fluorine-containing triethoxysilanes: synthesis, film forming and properties

    No full text
    International audienceNovel fluorine-containing carbofunctional organosilicon monomers were synthesized: 3-pentafluorobenzylideneaminopropylethoxysilane (EtO)3Si(CH2)3N=CH-C6F5, N-3-methoxydiethoxysilylpropyltrifluoroacetamide (EtO)2(MeO)Si(CH2)3NHC(O)CF3, and 1,1,5-trihydrooctafluoroamyl N-3-triethoxysilylpropylaminopropanoate (EtO)3Si(CH2)3NH(CH2)2C(O)OCH2(CF2)3CHF2. Compositions for the formation of transparent thermally stable films were prepared from these monomers. The films have low absorbance intensity near 1550 nm, i.e., in the region of photosignal transmission of modern optical communication systems. The compositions can dissolve complexes with organofluorine ligands and produce transparent homogeneous films doped with rare-earth metals. The concentrations of the complexes in the matrices are 3.7–21.4 wt.% (metal concentrations are 0.6–3.7%). Fluorescence and fluorescence excitation spectra of the matrices and electronic absorption spectra of the doped films were studied

    Synthesis and thermal transformations of polyphosphosiloxane based on trimethyl phosphate and (3-aminopropyl)triethoxysilane

    No full text
    International audienceA method for the synthesis of polyphosphosiloxane by the thermal condensation of an equimolar mixture of trimethyl phosphate and (3-aminopropyl)triethoxysilane at 200 °C was developed. The reaction affords ethanol and polyphosphosiloxane-{Si(OEt)[(CH2)3NR1R2]-O-P(O)(OMe)-O}n-(R1 = H, Me; R2 = Me), whose composition and structure were confirmed by 1H, 13C, and 31P NMR spectroscopy, IR spectroscopy, and elemental analysis. The scheme of polymerization involving the intermediate formation of methyl-and dimethylphosphoric acids and their condensation with ethoxysilanes was proposed. The calcination of the obtained polyphosphosiloxane in vacuo at 350 °C results in the elimination of the amino groups and alkoxide substituents, and a spatially cross-linked polymer is formed as an amorphous powder. Its further thermolysis at 600 and 1000 °C gives crystalline phosphosilicates Si5O(PO4)6 or SiP2O7. Their amorphous and crystalline samples were characterized by IR spectroscopy, X-ray diffraction analysis, and solid-state 13C and 31P spectroscopy
    corecore