73 research outputs found

    High-rate GPS positioning for tracing anthropogenic seismic activity. The 29 January 2019 mining tremor in Legnica- GƂogów Copper District, Poland

    Get PDF
    High-rate GNSS observations are usually studied in relation to earthquake analysis and structural monitoring. Most of the previous research on short-term dynamic deformations has been limited to natural earthquakes with magnitudes exceeding 5 and amplitudes equal to several dozen centimetres. High-frequency position monitoring via GNSS stations is particularly important in mining areas due to the need to monitor mining damages. On 29 January 2019 (12:53:44 UTC), an M3.7 event occurred in the area of Legnica-GƂogów Copper District. This study presents GPS-derived displacement analysis in relation to seismological data. Station position time series were determined by double differencing and Precise Point Positioning. The peak ground displacement was 2–14 mm. The correlation coefficients between GPS and seismological displacement time series reached 0.92. A statistical evaluation of GPS displacement time series was carried out to detect an event using only GPS observations

    Density of human bone marrow stromal cells regulates commitment to vascular lineages

    Get PDF
    Mechanisms underlying the vascular differentiation of human bone marrow stromal cells (HBMSCs) and their contribution to neovascularisation are poorly understood. We report the essential role of cell density-induced signals in directing HBMSCs along endothelial or smooth muscle lineages. Plating HBMSCs at high density rapidly induced Notch signaling, which initiated HBMSC commitment to a vascular progenitor cell population expressing markers for both vascular lineages. Notch also induced VEGF-A, which inhibited vascular smooth muscle commitment while consolidating differentiation to endothelial cells with cobblestone morphology and characteristic endothelial markers and functions. These mechanisms can be exploited therapeutically to regulate HBMSCs during neovascularisation

    Notch and Senescence.

    Get PDF
    Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing

    NOTCH1 mediates a switch between two distinct secretomes during senescence

    Get PDF
    Senescence, a persistent form of cell-cycle arrest, is often associated with a diverse secretome, which provides complex functionality for senescent cells within the tissue microenvironment. We show that oncogene-induced senescence is accompanied by a dynamic fluctuation of NOTCH1 activity, which drives a TGF-ÎČ-rich secretome, while suppressing the senescence-associated pro-inflammatory secretome through inhibition of C/EBPÎČ. NOTCH1 and NOTCH1-driven TGF-ÎČ contribute to 'lateral induction of senescence' through a juxtacrine NOTCH-JAG1 pathway. In addition, NOTCH1 inhibition during senescence facilitates upregulation of pro-inflammatory cytokines, promoting lymphocyte recruitment and senescence surveillance in vivo. As enforced activation of NOTCH1 signalling confers a near mutually exclusive secretory profile compared with typical senescence, our data collectively indicate that the dynamic alteration of NOTCH1 activity during senescence dictates a functional balance between these two distinct secretomes: one representing TGF-ÎČ and the other pro-inflammatory cytokines, highlighting that NOTCH1 is a temporospatial controller of secretome composition.This work was supported by the University of Cambridge, Cancer Research UK and Hutchison Whampoa. The M.N. laboratory is supported by Cancer Research UK Cambridge Institute Core Grant (C14303/A17197). M.H. was supported by CRUK Translational Medicine Research Fellowship and CRUK Clinician Scientist Fellowship (C52489/A19924). This work was also supported by a Wellcome Trust PRF (WT101835) to P.J.L., a Wellcome Trust Senior Fellowship to M.P.W. (108070/Z/15/Z), a Wellcome Trust Training Fellowship to N.J.M. (093964/Z/10/Z), and a Wellcome Trust Intermediate Fellowship (097162/Z/11/Z) to S.S. L.Z. was funded by the German Research Foundation (DFG; grants FOR2314 and SFB685), the Gottfried Wilhelm Leibniz Program, the European Research Council (projects ‘CholangioConcept’), the German Ministry for Education and Research (BMBF) (eMed-Multiscale HCC), the German Universities Excellence Initiative (third funding line: ‘future concept’), the German Center for Translational Cancer Research (DKTK) and the German–Israeli Cooperation in Cancer Research (DKFZ–MOST).This is the author accepted manuscript. The final version is available from Nature Publishing Group at http://dx.doi.org/10.1038/ncb3397

    Cell-Shape Regulation of Smooth Muscle Cell Proliferation

    Get PDF
    Vascular smooth muscle cells (SMCs) play an important role in vascular remodeling. Heterogeneity and phenotypic changes in SMCs are usually accompanied by a morphological difference, i.e., elongated/spindle-like versus spread-out or epithelioid/rhomboid cell shapes. However, it is not known whether the cell shape directly regulates SMC proliferation, and what the underlying mechanisms are. In this study, microgrooves and micropatterned matrix islands were used to engineer the cell shape and investigate the associated biophysical and biological mechanisms. Compared to spread-out SMCs on nonpatterned surfaces, SMCs on micropatterned surfaces demonstrated elongated morphology, significantly lower cell and nucleus shape indexes, less spreading, a lower proliferation rate, and a similar response (but to a lesser extent) to platelet-derived growth factor, transforming growth factor-ÎČ, and mechanical stretching. DNA microarray profiling revealed a lower expression of neuron-derived orphan receptor-1 (NOR-1) in elongated SMCs. Knocking down NOR-1 suppressed DNA synthesis in SMCs, suggesting that NOR-1 is a mediator of cell elongation effects. Regulation of DNA synthesis in SMCs by the cell shape alone and a decrease in DNA synthesis in the case of small cell spreading area were achieved by micropatterning SMCs on matrix islands of different shapes and spreading areas. Changes in the cell shape also affected the nucleus shape, whereas variations in the cell spreading area modulated the nucleus volume, indicating a possible link between nucleus morphology (both shape and volume) and DNA synthesis. The findings of this investigation provide insight into cell shape effects on cell structure and proliferation, and have direct implications for vascular pathophysiology
    • 

    corecore