582 research outputs found

    Higher Order Corrections to the Primordial Gravitational Wave Spectrum and its Impact on Parameter Estimates for Inflation

    Full text link
    We study the impact of the use of the power series expression for the primordial tensor spectrum on parameter estimation from future direct detection gravitational wave experiments. The spectrum approximated by the power series expansion may give large deviation from the true (fiducial) value when it is normalized at CMB scale because of the large separation between CMB and direct detection scales. We derive the coefficients of the higher order terms of the expansion up to the sixth order within the framework of the slow-roll approximation and investigate how well the inclusion of higher order terms improves the analytic prediction of the spectrum amplitude by comparing with numerical results. Using the power series expression, we consider future constraints on inflationary parameters expected from direct detection experiments of the inflationary gravitational wave background and show that the truncation of the higher order terms can lead to incorrect evaluation of the parameters. We present two example models; a quadratic chaotic inflation model and mixed inflaton and curvaton model with a quartic inflaton potential.Comment: 25 pages, 7 figures, revised version accepted by JCA

    Searching for gravitational wave bursts from cosmic string cusps with the Parkes Pulsar Timing Array

    Full text link
    Cosmic strings are potential gravitational wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1%. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of G mu ~ 10^{-5}, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array (SKA).Comment: Accepted for publication by MNRA

    Probing anisotropies of the Stochastic Gravitational Wave Background with LISA

    Get PDF
    We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discuss the main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that β ΩGW ∼ 2 × 10-11 is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor ∼ 103 β relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources

    Fox-1 family of RNA-binding proteins

    Get PDF
    The Fox-1 family of RNA-binding proteins are evolutionarily conserved regulators of tissue-specific alternative splicing in metazoans. The Fox-1 family specifically recognizes the (U)GCAUG stretch in regulated exons or in flanking introns, and either promotes or represses target exons. Recent unbiased bioinformatics analyses of alternatively spliced exons and comparison of various vertebrate genomes identified the (U)GCAUG stretch as a highly conserved and widely distributed element enriched in intronic regions surrounding exons with altered inclusion in muscle, heart, and brain, consistent with specific expression of Fox-1 and Fox-2 in these tissues. Global identification of Fox-2 target RNAs in living cells revealed that many of the Fox-2 target genes themselves encode splicing regulators. Further systematic elucidation of target genes of the Fox-1 family and other splicing regulators in various tissues will lead to a comprehensive understanding of splicing regulatory networks

    Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry

    Get PDF
    Melon (Cucumis melo L.), belonging to the Cucurbitaceae family, is a significant source of phytochemicals which provide human health benefits. High-performance liquid chromatography coupled to electrospray ionization mass spectrometry quadropole-time of flight (HPLC-ESIQTOF-MS) was used for the comprehensive characterization of 14 extracts from 3 Spanish varieties of melon (Galia, Cantaloupe, and Piel de Sapo). A total of 56 different compounds were tentatively identified, including: amino acids and derivatives, nucleosides, organic acids, phenolic acids and derivatives, esters, flavonoids, lignans, and other polar compounds. Of these, 25 were tentatively characterized for the first time in C. melo varieties. Principalcomponent analysis (PCA) was applied to gain an overview of the distribution of the melon varieties and to clearly separate the different varieties. The result of the PCA for the negative mode was evaluated. The variables most decisive to discriminate among varieties included 12 of the metabolites tentatively identified.CIDAF (Centro de Investigación y desarrollo del Alimento Funcional), Departamento de química analítica. Grupo FQM-297

    Evaluation of A2BP1 as an Obesity Gene

    Get PDF
    OBJECTIVE-A genome-wide association study (GWAS) in Pima Indians (n = 413) identified variation in the ataxin-2 binding protein 1 gene (A2BP1) that was associated with percent body fat. On the basis of this association and the obese phenotype of ataxin-2 knockout mice, A2BP1 was genetically and functionally analyzed to assess its potential role in human obesity. RESEARCH DESIGN AND METHODS-Variants spanning A2BP1 were genotyped in a population-based sample of 3,234 full-heritage Pima Indians, 2,843 of whom were not part of the initial GWAS study and therefore could serve as a sample to assess replication. Published GWAS data across A2BP1 were additionally analyzed in French adult (n = 1,426) and children case/control subjects (n = 1,392) (Meyre et al. Nat Genet 2009;41:157-159). Selected variants were genotyped in two additional samples of Caucasians (Amish, n = 1,149, and German children case/control subjects, n = 998) and one additional Native American (n = 2,531) sample. Small interfering RNA was used to knockdown A2bp1 message levels in mouse embryonic hypothalamus cells. RESULTS-No single variant in A2BP1 was reproducibly associated with obesity across the different populations. However, different variants within intron 1 of A2BP1 were associated with BMI in full-heritage Pima Indians (rs10500331, P = 1.9 x 10(-7)) and obesity in French Caucasian adult (rs4786847, P = 1.9 x 10(-10)) and children (rs8054147, P = 9.2 x 10(-6)) case/control subjects. Reduction of A2bp1 in mouse embryonic hypothalamus cells decreased expression of Atxn2, Insr, and Mc4r. CONCLUSIONS-Association analysis suggests that variation in A2BP1 influences obesity, and functional studies suggest that A2BP1 could potentially affect adiposity via the hypothalamic MC4R pathway. Diabetes 59:2837-2845, 201

    Optical Silencing of C. elegans Cells with Arch Proton Pump

    Get PDF
    BACKGROUND: Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We describe the application of archaerhodopsin-3 (Arch), a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm). Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR) in optogenetic studies of C. elegans

    Endonuclease heteroduplex mismatch cleavage for detecting mutation genetic variation of trypsin inhibitors in soybean

    Get PDF
    The objective of this work was to evaluate the genetic variation of trypsin inhibitor in cultivated (Glycine max L.) and wild (Glycine sofa Siebold & Zucc.) soybean varieties. Genetic variations of the Kunitz trypsin inhibitor, represented by a 21-kD protein (KTI), and of the Bowman-Birk trypsin chymotrypsin inhibitor (BBI) were evaluated in cultivated (G. max) and wild (G. sofa) soybean varieties. Endonuclease heteroduplex mismatch cleavage assays were performed to detect mutations in the KTI gene, with a single-stranded specific nuclease obtained from celery extracts (CEL I). The investigated soybean varieties showed low level of genetic variation in KTI and BBI. PCR-RFLP analysis divided the BBI-A type into subtypes A1 and A2, and showed that Tib type of KTI is the dominant type. Digestion with restriction enzymes was not able to detect differences between ti-null and other types of Ti alleles, while the endonuclease heteroduplex mismatch cleavage assay with CEL I could detect ti-null type. The digestion method with CEL I provides a simple and useful genetic tool for SNP analysis. The presented method can be used as a tool for fast and useful screening of desired genotypes in future breeding programs of soybean

    FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression

    Get PDF
    Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1
    corecore