399 research outputs found
Superpatterns and Universal Point Sets
An old open problem in graph drawing asks for the size of a universal point
set, a set of points that can be used as vertices for straight-line drawings of
all n-vertex planar graphs. We connect this problem to the theory of
permutation patterns, where another open problem concerns the size of
superpatterns, permutations that contain all patterns of a given size. We
generalize superpatterns to classes of permutations determined by forbidden
patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the
213-avoiding permutations, half the size of known superpatterns for
unconstrained permutations. We use our superpatterns to construct universal
point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16
factor. We prove that every proper subclass of the 213-avoiding permutations
has superpatterns of size O(n log^O(1) n), which we use to prove that the
planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA
Mechanical collision simulation of potato tubers
This paper presents the results of an investigation on internal stress progression and the explicit dynamics simulation of the bruising behavior of potato tubers under dynamic mechanical collision. Physical measurements, mechanical tests, advanced solid modeling, and engineering simulation techniques were utilized in the study. The tuber samples used in the simulation were reverse engineered and finite element analysis (FEA) was set up to simulate the collision-based bruising behavior of the potato tubers. The total number of identical tuber models used in the simulation was 17. The numerical data of the FEA results revealed useful stress distribution and mechanical behavior visuals. These results are presented in a frame that can be used to describe bruise susceptibility value on potato-like agricultural crops. The modulus of elasticity was calculated from compression test data as 3.12 MPa. Structural stresses of 1.40 and 3.13 MPa on the impacting (hitting) and impacted (hit) tubers (respectively) were obtained. These stress values indicate that bruising is likely to occur on the tubers. This research paper provides a useful how-to-do strategy to further research on complicated bruising investigations of solid-like agricultural products through advanced engineering simulation techniques. Practical applications: This research aims to simulate realistic dynamic deformation of potato tubers during mechanical collision, which is very hard to achieve through physical or analytical expressions. This is attractive because related food processing industries have shown their interest in determining the physical properties and bruising behavior of food/agricultural products using experimental, numerical, and engineering simulation methods so that it can be used in their food processing technology. Very limited data have been found available in the literature about the subject of FEM-based explicit dynamics simulation of solid-like agricultural crops such as the self-collision case of potato tubers (which is very important for indoor or outdoor potato processing). Comparative investigations on determination of modulus of elasticity are very limited as well. Most of the research focused on single calculation theory and linear static loading assumption-based FEM simulation solutions. Here, we report a “how-to-do” case study for dynamic self-collision simulation of potato tubers
Effect of population stratification analysis on false-positive rates for common and rare variants
Principal components analysis (PCA) has been successfully used to correct for population stratification in genome-wide association studies of common variants. However, rare variants also have a role in common disease etiology. Whether PCA successfully controls population stratification for rare variants has not been addressed. Thus we evaluate the effect of population stratification analysis on false-positive rates for common and rare variants at the single-nucleotide polymorphism (SNP) and gene level. We use the simulation data from Genetic Analysis Workshop 17 and compare false-positive rates with and without PCA at the SNP and gene level. We found that SNPs’ minor allele frequency (MAF) influenced the ability of PCA to effectively control false discovery. Specifically, PCA reduced false-positive rates more effectively in common SNPs (MAF > 0.05) than in rare SNPs (MAF < 0.01). Furthermore, at the gene level, although false-positive rates were reduced, power to detect true associations was also reduced using PCA. Taken together, these results suggest that sequence-level data should be interpreted with caution, because extremely rare SNPs may exhibit sporadic association that is not controlled using PCA
Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns
An asymptotic interface equation for directional solidification near the
absolute stabiliy limit is extended by a nonlocal term describing a shear flow
parallel to the interface. In the long-wave limit considered, the flow acts
destabilizing on a planar interface. Moreover, linear stability analysis
suggests that the morphology diagram is modified by the flow near the onset of
the Mullins-Sekerka instability. Via numerical analysis, the bifurcation
structure of the system is shown to change. Besides the known hexagonal cells,
structures consisting of stripes arise. Due to its symmetry-breaking
properties, the flow term induces a lateral drift of the whole pattern, once
the instability has become active. The drift velocity is measured numerically
and described analytically in the framework of a linear analysis. At large flow
strength, the linear description breaks down, which is accompanied by a
transition to flow-dominated morphologies, described in a companion paper.
Small and intermediate flows lead to increased order in the lattice structure
of the pattern, facilitating the elimination of defects. Locally oscillating
structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review
Patterns for High Performance Multiscale Computing
We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First, the description component translates the task graph, representing a multiscale simulation, to a particular type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms to find the most suitable mapping between submodels and available HPC resources. Third, the execution component which a middleware layer maps submodels to the number and type of physical resources based on the suggestions emanating from the optimisation part together with infrastructure-specific metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution of complex multiscale simulations on high performance computers, and to provide both application-specific and pattern-specific performance optimisation. We test the performance and the resource usage for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing so, we demonstrate how the software automates resource selection and load balancing, and delivers performance benefits from both the end-user and the HPC system level perspectives
Estimating the Capacity for ART Provision in Tanzania with the Use of Data on Staff Productivity and Patient Losses
BACKGROUND: International targets for access to antiretroviral therapy (ART) have over-estimated the capacity of health systems in low-income countries in Sub-Saharan Africa. The WHO target for number on treatment by end 2005 for Tanzania was 10 times higher than actually achieved. The target of the national Care and Treatment Plan (CTP) was also not reached. We aimed at estimating the capacity for ART provision and created five scenarios for ART production given existing resource limitations. METHODS: A situation analysis including scrutiny of staff factors, such as available data on staff and patient factors including access to ART and patient losses, made us conclude that the lack of clinical staff is the main limiting factor for ART scale-up, assuming that sufficient drugs and supplies are provided by donors. We created a simple formula to estimate the number of patients on ART based on availability and productivity of clinical staff, time needed to initiate vs maintain a patient on ART and patient losses using five different scenarios with varying levels of these parameters. FINDINGS: Our scenario assuming medium productivity (40% higher than that observed in 2002) and medium loss of patients (20% in addition to 15% first-year mortality) coincides with the actual reported number of patients initiated on ART up to 2008, but is considerably below the national CTP target of 90% coverage for 2009, corresponding to 420,000 on ART and 710,000 life-years saved (LY's). Our analysis suggests that a coverage of 40% or 175,000 on treatment and 350,000 LY's saved is more achievable. CONCLUSION: A comparison of our scenario estimations and actual output 2006-2008 indicates that a simple user-friendly dynamic model can estimate the capacity for ART scale-up in resource-poor settings based on identification of a limiting staff factor and information on availability of this staff and patient losses. Thus, it is possible to set more achievable targets
Polarization and spectral energy distribution in OJ 287 during the 2016/17 outbursts
We report optical photometric and polarimetric observations of the blazar OJ 287 gathered during 2016/17. The high level of activity, noticed after the General Relativity Centenary flare, is argued to be part of the follow-up flares that exhibited high levels of polarization and originated in the primary black hole jet. We propose that the follow-up flares were induced as a result of accretion disk perturbations, travelling from the site of impact towards the primary SMBH. The timings inferred from our observations allowed us to estimate the propagation speed of these perturbations. Additionally, we make predictions for the future brightness of OJ 287. © 2017 by the authors
Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein
<p>Abstract</p> <p>Background</p> <p><it>Pepino mosaic virus </it>(PepMV) is considered one of the most dangerous pathogens infecting tomatoes worldwide. The virus is highly diverse and four distinct genotypes, as well as inter-strain recombinants, have already been described. The isolates display a wide range on symptoms on infected plant species, ranging from mild mosaic to severe necrosis. However, little is known about the mechanisms and pattern of PepMV molecular evolution and about the role of individual proteins in host-pathogen interactions.</p> <p>Methods</p> <p>The nucleotide sequences of the triple gene block 3 (TGB3) from PepMV isolates varying in symptomatology and geographic origin have been analyzed. The modes and patterns of molecular evolution of the TGBp3 protein were investigated by evaluating the selective constraints to which particular amino acid residues have been subjected during the course of diversification. The tridimensional structure of TGBp3 protein has been modeled <it>de novo </it>using the Rosetta algorithm. The correlation between symptoms development and location of specific amino acids residues was analyzed.</p> <p>Results</p> <p>The results have shown that TGBp3 has been evolving mainly under the action of purifying selection operating on several amino acid sites, thus highlighting its functional role during PepMV infection. Interestingly, amino acid 67, which has been previously shown to be a necrosis determinant, was found to be under positive selection.</p> <p>Conclusions</p> <p>Identification of diverse selection events in TGB3p3 will help unraveling its biological functions and is essential to an understanding of the evolutionary constraints exerted on the <it>Potexvirus </it>genome. The estimated tridimensional structure of TGBp3 will serve as a platform for further sequence, structural and function analysis and will stimulate new experimental advances.</p
Wrong schools or wrong students? The potential role of medical education in regional imbalances of the health workforce in the United Republic of Tanzania
<p>Abstract</p> <p>Background</p> <p>The United Republic of Tanzania, like many other countries in sub-Saharan Africa, faces a human resources crisis in its health sector, with a small and inequitably distributed health workforce. Rural areas and other poor regions are characterised by a high burden of disease compared to other regions of the country. At the same time, these areas are poorly supplied with human resources compared to urban areas, a reflection of the situation in the whole of Sub-Saharan Africa, where 1.3% of the world's health workforce shoulders 25% of the world's burden of disease. Medical schools select candidates for training and form these candidates' professional morale. It is therefore likely that medical schools can play an important role in the problem of geographical imbalance of doctors in the United Republic of Tanzania.</p> <p>Methods</p> <p>This paper reviews available research evidence that links medical students' characteristics with human resource imbalances and the contribution of medical schools in perpetuating an inequitable distribution of the health workforce.</p> <p>Existing literature on the determinants of the geographical imbalance of clinicians, with a special focus on the role of medical schools, is reviewed. In addition, structured questionnaires collecting data on demographics, rural experience, working preferences and motivational aspects were administered to 130 fifth-year medical students at the medical faculties of MUCHS (University of Dar es Salaam), HKMU (Dar es Salaam) and KCMC (Tumaini University, Moshi campus) in the United Republic of Tanzania. The 130 students represented 95.6% of the Tanzanian finalists in 2005. Finally, we apply probit regressions in STATA to analyse the cross-sectional data coming from the aforementioned survey.</p> <p>Results</p> <p>The lack of a primary interest in medicine among medical school entrants, biases in recruitment, the absence of rural related clinical curricula in medical schools, and a preference for specialisation not available in rural areas are among the main obstacles for building a motivated health workforce which can help correct the inequitable distribution of doctors in the United Republic of Tanzania.</p> <p>Conclusion</p> <p>This study suggests that there is a need to re-examine medical school admission policies and practices.</p
Optimizing the diagnostic work-up of acute uncomplicated urinary tract infections
<p>Abstract</p> <p>Background</p> <p>Most diagnostic tests for acute uncomplicated urinary tract infections (UTIs) have been previously studied in so-called single-test evaluations. In practice, however, clinicians use more than one test in the diagnostic work-up. Since test results carry overlapping information, results from single-test studies may be confounded. The primary objective of the Amsterdam Cystitis/Urinary Tract Infection Study (ACUTIS) is to determine the (additional) diagnostic value of relevant tests from patient history and laboratory investigations, taking into account their mutual dependencies. Consequently, after suitable validation, an easy to use, multivariable diagnostic rule (clinical index) will be derived.</p> <p>Methods</p> <p>Women who contact their GP with painful and/or frequent micturition undergo a series of possibly relevant tests, consisting of patient history questions and laboratory investigations. Using urine culture as the reference standard, two multivariable models (diagnostic indices) will be generated: a model which assumes that patients attend the GP surgery and a model based on telephone contact only. Models will be made more robust using the bootstrap. Discrimination will be visualized in high resolution histograms of the posterior UTI probabilities and summarized as 5<sup>th</sup>, 10<sup>th</sup>, 25<sup>th </sup>50<sup>th</sup>, 75<sup>th</sup>, 90<sup>th</sup>, and 95<sup>th </sup>centiles of these, Brier score and the area under the receiver operating characteristics curve (ROC) with 95% confidence intervals. Using the regression coefficients of the independent diagnostic indicators, a diagnostic rule will be derived, consisting of an efficient set of tests and their diagnostic values.</p> <p>The course of the presenting complaints is studied using 7-day patient diaries. To learn more about the natural history of UTIs, patients will be offered the opportunity to postpone the use of antibiotics.</p> <p>Discussion</p> <p>We expect that our diagnostic rule will allow efficient diagnosis of UTIs, necessitating the collection of diagnostic indicators with proven added value. GPs may use the rule (preferably after suitable validation) to estimate UTI probabilities for women with different combinations of test results. Finally, in a subcohort, an attempt is made to identify which indicators (including antibiotic treatment) are useful to prognosticate recovery from painful and/or frequent micturition.</p
- …