59 research outputs found
The Adipokines in Domestic Animal Reproduction: Expression and Role in the Regulation of Ovarian Function
Currently, it is clear that female reproduction is regulated by the hypothalamic–pituitary-ovary axis, which produces many hormones that control reproductive stages. It is therefore important to have knowledge of new regulators/hormones controlling reproduction in domestic animals. In female animals, energy metabolism and fertility are tightly connected, and reciprocally regulated. The adipose tissue is well known to be implicated in the secretion of several hormones, such as the adiponectin, resistin, chemerin, visfatin, vaspin and apelin, the so-called adipokines or “adipose tissue-derived hormones”. Many reports indicate that adipokines regulate the ovarian follicles’ development, the onset of puberty and/or ovulation. This chapter summarizes that several adipokines are expressed in the ovary and that they can regulate ovarian physiology such as the steroid hormone production, cell proliferation, apoptosis and oocyte maturation in different domestic animals like pigs, cows, goats, ewes, chickens and turkeys
Expression and in vitro effect of phoenixin-14 on the porcine ovarian granulosa cells
International audiencePhoenixin-14 (PNX-14) regulates energy metabolism via the G protein-coupled receptor 173 (GPR173); elevated plasma levels have been described in patients with polycystic ovary syndrome. The aims were to investigate the ovarian expression of PNX-14/GPR173 and the in vitro effect of PNX-14 on granulosa cells (Gc) function. Transcript and protein levels of PNX-14/GRP173 were analysed by real-time PCR, western blot and immuno-histochemistry in the porcine ovarian follicles at days 2-3, 10-12 and 16-18 of the oestrous. For in vitro ex-periments, Gc were isolated from follicles at days 10-12 of the oestrous (4-6 mm) and PNX-14 at doses 1-1000 nM was added for 24-72 h to determine Gc proliferation. Cell cycle progression, E2 secretion, expression of proliferating cells nuclear antigen, cyclins, mitogen-activated kinase (MAP3/1; ERK1/2), protein kinase B (AKT) and signal transducer and activator of transcription 3 (STAT3) were studied. The involvement of these kinases in PNX-14 action on Gc proliferation was analysed using pharmacological inhibitors. Levels of GPR173 were increased in the ovarian follicles with oestrous progression, while only PNX-14 protein was the highest at days 10-12 of the oestrous. Immuno-signal of PNX-14 was detected in Gc and theca cells and oocyte, while GPR173 was mostly in theca. Interestingly, PNX-14 stimulated Gc proliferation, E2 secretion, cell cycle progression and cyclins expression and had a modulatory effect on MAP3/1, AKT and STAT3 activation. Our study suggests that PNX-14 could be an important factor for porcine reproduction by influencing ovarian follicle growth through direct action on Gc function
End-of-life management of single-use baby diapers: Analysis of technical, health and environment aspects
Single-use baby diapers belongs to an important group of products used in the parenting journey because of their high performance and convenience. Single-use baby diapers are normally thrown away after one-time use, resulting in a waste management problem. The goal of this paper was to better understand main environmental concerns of different types of diapers and address how to reduce them, with a special consideration of waste management strategies and user behaviour practices. Furthermore, health and environmental hazards potentially associated with materials included in diapers, or substances formed from diapers during the waste treatment stage, are also analysed (e.g., phthalates, pesticides, dioxins, pesticides). Three main types of baby diapers have been analysed: single-use baby diapers, reusable baby diapers, and biodegradable single-use diapers. Each type of diaper comes with technical characteristics and environmental concerns and challenges, which are discussed in this paper to support the development of measures for the safe(r) and sustainable design, use and end of life management of baby diapers.Justyna PĹ‚otka-Wasylka is grateful for the finantial support by the National Science Centre, Poland within the grant project (No.: 2020/37/B/ST4/02886)
Spexin role in human granulosa cells physiology and PCOS : expression and negative impact on steroidogenesis and proliferation
International audienceAbstract Spexin (SPX) is a novel neuropeptide and adipokine negatively correlated with obesity and insulin resistance. A recent study investigated expression and regulatory function of SPX in the hypothalamus and pituitary; however, the effect on ovarian function is still unknown. The aim of this study was to characterize the expression of SPX and its receptors, galanin receptors 2 and 3 (GALR2/3), in the human ovary and to study its in vitro effect on granulosa cells (GC) function. Follicular fluid (FF) and GC were obtained from normal weight and obese healthy and diagnosed with polycystic ovarian syndrome (PCOS) women. Expression of SPX and GALR2/3 in the ovary was studied by qPCR, western blot, and immunohistochemistry. The level of SPX in FF was assessed by enzyme-linked immunosorbent assay. The in vitro effect of recombinant human SPX on GC proliferation, steroidogenesis, and signaling pathways (MAP3/1, STAT3, AKT, PKA) was analyzed. Moreover, GC proliferation and estradiol (E2) secretion were measured with and without an siRNA against GALR2/3 and pharmacological inhibition of the above kinases. The results showed that both the SPX concentration in FF and its gene expression were decreased in GC of obese and PCOS women, while the protein expression of GALR2/3 was increased. We noted that SPX reduced GC proliferation and steroidogenesis; these effects were mediated by GALR2/3 and kinases MAP3/1, AKT, and STAT3 for proliferation or kinases MAP3/1 and PKA for E2 secretion. The obtained data clearly documented that SPX is a novel regulator of human ovarian physiology and possibly plays a role in PCOS pathogenesis
Mutation in HvCBP20 (Cap binding protein 20) adapts barley to drought stress at phenotypic and transcriptomic levels
This work was supported by the European Regional Development Fund through the Innovative Economy for Poland 2007–2013, project WND-POIG.01.03.01-00-101/08 POLAPGEN-BD “Biotechnological tools for breeding cereals with increased resistance to drought,” task 22; National Science Centre, Poland, project SONATA 2015/19/D/NZ9/03573 “Translational genomics approach to identify the mechanisms of CBP20 signalosome in Arabidopsis and barley under drought stress.”CBP20 (Cap-Binding Protein 20) encodes a small subunit of the cap-binding complex (CBC), which is involved in the conserved cell processes related to RNA metabolism in plants and, simultaneously, engaged in the signaling network of drought response, which is dependent on ABA. Here, we report the enhanced tolerance to drought stress of barley mutant in the HvCBP20 gene manifested at the morphological, physiological, and transcriptomic levels. Physiological analyses revealed differences between the hvcbp20.ab mutant and its WT in response to a water deficiency. The mutant exhibited a higher relative water content (RWC), a lower stomatal conductance and changed epidermal pattern compared to the WT after drought stress. Transcriptome analysis using the Agilent Barley Microarray integrated with observed phenotypic traits allowed to conclude that the hvcbp20.ab mutant exhibited better fitness to stress conditions by its much more efficient and earlier activation of stress-preventing mechanisms. The network hubs involved in the adjustment of hvcbp20.ab mutant to the drought conditions were proposed. These results enabled to make a significant progress in understanding the role of CBP20 in the drought stress response.European Regional Development Fund; National Science Centre, Polan
- …