328 research outputs found

    Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes

    Get PDF
    In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway. The null mutation of GPIHBP1 causes severe hypertriglyceridemia and pancreatitis, and GPIGBP1 autoantibody syndrome also causes severe hypertriglyceridemia and recurrent episodes of acute pancreatitis. In patients with type 2 diabetes, the elevated serum triglyceride levels negatively correlate with circulating LPL levels, and positively with circulating APOC1, APOC3, ANGPTL3, ANGPTL4 and ANGPTL8 levels. In contrast, circulating GPIHBP1 levels are not altered in type 2 diabetes patients with higher serum triglyceride levels, whereas they are elevated in type 2 diabetes patients with diabetic retinopathy and nephropathy. The circulating regulators of lipolytic complex might be new biomarkers for lipid and glucose metabolism, and diabetic vascular complications

    Identification of the nuclear export signal in the helix–loop–helix inhibitor Id1

    Get PDF
    AbstractId proteins play important roles in cellular differentiation and proliferation by negatively regulating basic helix–loop–helix transcription factors. Although their intracellular localization may change depending on the biological situation, little is known about the molecular determinants underlying such changes. Here we report the identification of a nuclear export signal (NES) in Id1. The identified NES was different from that of Id2, but had the ability to confine heterologous green fluorescent protein to the cytoplasm. Thus, our results indicate that the intracellular localization of Id1 is regulated differently from that of Id2

    Notch1 and Notch3 Instructively Restrict bFGF-Responsive Multipotent Neural Progenitor Cells to an Astroglial Fate

    Get PDF
    AbstractNotch1 has been shown to induce glia in the peripheral nervous system. However, it has not been known whether Notch can direct commitment to glia from multipotent progenitors of the central nervous system. Here we present evidence that activated Notch1 and Notch3 promotes the differentiation of astroglia from the rat adult hippocampus-derived multipotent progenitors (AHPs). Quantitative clonal analysis indicates that the action of Notch is likely to be instructive. Transient activation of Notch can direct commitment of AHPs irreversibly to astroglia. Astroglial induction by Notch signaling was shown to be independent of STAT3, which is a key regulatory transcriptional factor when ciliary neurotrophic factor (CNTF) induces astroglia. These data suggest that Notch provides a CNTF-independent instructive signal of astroglia differentiation in CNS multipotent progenitor cells
    corecore