3 research outputs found
A Twisted Ladder: relating the Fe superconductors to the high cuprates
We construct a 2-leg ladder model of an Fe-pnictide superconductor and
discuss its properties and relationship with the familiar 2-leg cuprate model.
Our results suggest that the underlying pairing mechanism for the Fe-pnictide
superconductors is similar to that for the cuprates.Comment: 5 pages, 4 figure
Nuclear magnetic relaxation and superfluid density in Fe-pnictide superconductors: An anisotropic \pm s-wave scenario
We discuss the nuclear magnetic relaxation rate and the superfluid density
with the use of the effective five-band model by Kuroki et al. [Phys. Rev.
Lett. 101, 087004 (2008)] in Fe-based superconductors. We show that a
fully-gapped anisotropic \pm s-wave superconductivity consistently explains
experimental observations. In our phenomenological model, the gaps are assumed
to be anisotropic on the electron-like \beta Fermi surfaces around the M point,
where the maximum of the anisotropic gap is about four times larger than the
minimum.Comment: 10 pages, 8 figures; Submitted versio
Point-Contact Spectroscopy of Iron-Based Layered Superconductor LaOFFeAs
We present point-contact spectroscopy data for junctions between a normal
metal and the newly discovered F-doped superconductor
LaOFFeAs (F-LaOFeAs). A zero-bias conductance peak was
observed and its shape and magnitude suggests the presence of Andreev bound
states at the surface of F-LaOFeAs, which provides a possible evidence of an
unconventional pairing symmetry with a nodal gap function. The maximum gap
value meV was determined from the measured spectra,
in good agreement with the recent experiments on specific heat and lower
critical field.Comment: 5 pages, 4 figure