1,311 research outputs found
Comment on "Quantum Monte Carlo Evidence for Superconductivity in the Three-Band Hubbard Model in Two Dimensions"
In a recent Letter, Kuroki and Aoki [Phys. Rev. Lett. 76, 440 (1996)]
presented quantum Monte-Carlo (QMC) results for pairing correlations in the
three-band Hubbard model, which describes the Cu-d_{x^2-y^2} and O-p_{x,y}
orbitals present in the CuO_2 planes of high-T_c materials. In this comment we
argue that (i) the used parameter set is not appropriate for the description of
high-T_c materials since it does not satisfy the minimal requirement of a
charge-transfer gap at half-filling, and (ii) the observed increase in the
d_{x^2-y^2} channel is dominantly produced by the pair-field correlations
without the vertex part. Hence, the claim of evidence of ODLRO is not
justified.Comment: 1 page latex and 2 eps-figures, uses epsfig, submitted to PR
A possible solution to the which-way problem of quantum interference
It is commonly assumed that the observation of an interference pattern is
incompatible with any information about the path taken by a quantum particle.
Here we show that, contrary to this assumption, the experimentally observable
effects of small polarization rotations applied in the slits of a double slit
experiment indicate that individual particles passing the slits before their
detection in the interference pattern are physically delocalized with regard to
their interactions with the local polarization rotations. The rate at which the
polarization is flipped to the orthogonal state is a direct measure of the
fluctuations of the polarization rotation angles experienced by each particle.
Particles detected in the interference maxima experience no fluctuations at
all, indicating a presence of exactly one half of the particle in each slit,
while particles detected close to the minima experience polarization rotations
much larger than the local rotations, indicating a negative presence in one of
the slits and a presence of more than one in the other.Comment: 7 pages, including 1 figure; improved explanation of the relation
with weak values and weak measurements in the introductio
Hole Pairs in the Two-Dimensional Hubbard Model
The interactions between holes in the Hubbard model, in the low density,
intermediate to strong coupling limit, are investigated. Dressed spin polarons
in neighboring sites have an increased kinetic energy and an enhanced hopping
rate. Both effects are of the order of the hopping integral and lead to an
effective attraction at intermediate couplings. Our results are derived by
systematically improving mean field calculations. The method can also be used
to derive known properties of isolated spin polarons.Comment: 4 page
Electronic properties of metal induced gap states at insulator/metal interfaces -- dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity
Motivated from the experimental observation of metal induced gap states
(MIGS) at insulator/metal interfaces by Kiguchi {\it et al.} [Phys. Rev. Lett.
{\bf 90}, 196803 (2003)], we have theoretically investigated the electronic
properties of MIGS at interfaces between various alkali halides and a metal
represented by a jellium with the first-principles density functional method.
We have found that, on top of the usual evanescent state, MIGS generally have a
long tail on halogen sites with a -like character, whose penetration depth
() is as large as half the lattice constant of bulk alkali halides.
This implies that , while little dependent on the carrier density in
the jellium, is dominated by the lattice constant (hence by energy gap) of the
alkali halide, where . We also propose a possibility of the MIGS working favorably for the
exciton-mediated superconductivity.Comment: 7 pages, 9 figure
Off-diagonal Wave Function Monte Carlo Studies of Hubbard Model I
We propose a Monte Carlo method, which is a hybrid method of the quantum
Monte Carlo method and variational Monte Carlo theory, to study the Hubbard
model. The theory is based on the off-diagonal and the Gutzwiller type
correlation factors which are taken into account by a Monte Carlo algorithm. In
the 4x4 system our method is able to reproduce the exact results obtained by
the diagonalization. An application is given to investigate the half-filled
band case of two-dimensional square lattice. The energy is favorably compared
with quantum Monte Carlo data.Comment: 9 pages, 11 figure
The Origin of the Charge Ordering and Its Relevance to Superconductivity in -(BEDT-TTF)X: The Effect of the Fermi Surface Nesting and the Distant Electron-Electron Interactions
The origin of the charge ordering in organic compounds -(BEDT-TTF) ((SCN), Tl,Rb,Co, Cs,Zn) is studied using an extended
Hubbard model. Calculating the charge susceptibility within random phase
approximation (RPA), we find that the charge
ordering observed at relatively high temperatures can be considered as a
consequence of a cooperation between the Fermi surface nesting, controlled by
the hopping integral in the direction, and the electron-electron
interactions, where the distant (next nearest neighbor) interactions that have
not been taken into account in most of the previous studies play an important
role.Mean field analysis at T=0 also supports the RPA results, and further
shows that in the charge ordered state, some portions of the Fermi
surface remain ungapped and are nested with a nesting vector close to the
modulation wave vector of the horizontal stripe ordering observed at low
temperatures in (SCN). We further study the possibility of
superconductivity by taking into account the distant off-site repulsions and
the band structure corresponding to I, in which superconductivity is
experimentally observed. We find that there is a close competition between
-wave-like singlet pairing and -wave-like triplet pairing due
to a cooperation between the charge and the spin fluctuations. The present
analysis provides a possible unified understanding of the experimental phase
diagram of the -(BEDT-TTF) family, ranging from a charge ordered
insulator to a superconductor.Comment: 13 pages, 18 figures (Figs.5,6,7,14,15,18 compressed using jpeg2ps
The effect of interchain interaction on the pairing symmetry competition in organic superconductors (TMTSF)X
We investigate the effect of interchain repulsive interaction on the pairing
symmetry competition in quasi-one-dimensional organic superconductors
(TMTSF)X by applying random phase approximation and quantum Monte Carlo
calculation to an extended Hubbard model. We find that interchain repulsive
interaction enhances the charge fluctuations, thereby making the
possibility of spin-triplet -wave pairing dominating over spin-singlet
d-wave pairing realistic.Comment: 4 page
CoO2-Layer-Thickness Dependence of Magnetic Properties and Possible Two Different Superconducting States in NaxCoO2.yH2O
In order to understand the experimentally proposed phase diagrams of
NaxCoO2.yH2O, we theoretically study the CoO2-layer-thickness dependence of
magnetic and superconducting (SC) properties by analyzing a multiorbital
Hubbard model using the random phase approximation. When the Co valence (s) is
+3.4, we show that the magnetic fluctuation exhibits strong layer-thickness
dependence where it is enhanced at finite (zero) momentum in the thicker
(thinner) layer system. A magnetic order phase appears sandwiched by two SC
phases, consistent with the experiments. These two SC phases have different
pairing states where one is the singlet extended s-wave state and the other is
the triplet p-wave state. On the other hand, only a triplet p-wave SC phase
with dome-shaped behavior of Tc is predicted when s=+3.5, which is also
consistent with the experiments. Controversial experimental results on the
magnetic properties are also discussed.Comment: 5 pages, 4 figures. Submitted to Journal of the Physical Society of
Japa
Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models
Possibility of unconventional pairing due to Coulomb interaction in
iron-pnictide superconductors is studied by applying a perturbative approach to
realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is
solved by expanding the effective pairing interaction perturbatively up to
third order in the on-site Coulomb integrals. The numerical results for the
5-band model suggest that the eigenvalues of the Eliashberg equation are
sufficiently large to explain the actual high Tc for realistic values of
Coulomb interaction and the most probable pairing state is spin-singlet s-wave
without any nodes just on the Fermi surfaces, although the superconducting
order parameter changes its sign between the small Fermi pockets. On the other
hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on
Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008
- …