3,549 research outputs found

    Multiple finite Riemann zeta functions

    Full text link
    Observing a multiple version of the divisor function we introduce a new zeta function which we call a multiple finite Riemann zeta function. We utilize some qq-series identity for proving the zeta function has an Euler product and then, describe the location of zeros. We study further multi-variable and multi-parameter versions of the multiple finite Riemann zeta functions and their infinite counterparts in connection with symmetric polynomials and some arithmetic quantities called powerful numbers.Comment: 19 page

    The 19-Vertex Model at critical regime q=1|q|=1

    Full text link
    We study the 19-vertex model associated with the quantum group Uq(sl2^)U_q(\hat{sl_2}) at critical regime q=1|q|=1. We give the realizations of the type-I vertex operators in terms of free bosons and free fermions. Using these free field realizations, we give the integral representations for the correlation functions.Comment: LaTEX2e, 19page

    On a q-analogue of the multiple gamma functions

    Full text link
    A qq-analogue of the multiple gamma functions is introduced, and is shown to satisfy the generalized Bohr-Morellup theorem. Furthermore we give some expressions of these function.Comment: 8 pages, AMS-Late

    Hierarchy of the Selberg zeta functions

    Full text link
    We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.Comment: 14 page

    On a conjecture by Boyd

    Full text link
    The aim of this note is to prove the Mahler measure identity m(x+x1+y+y1+5)=6m(x+x1+y+y1+1)m(x+x^{-1}+y+y^{-1}+5) = 6 m(x+x^{-1}+y+y^{-1}+1) which was conjectured by Boyd. The proof is achieved by proving relationships between regulators of both curves

    Observation of Bell Inequality violation in B mesons

    Full text link
    A pair of B0Bˉ0B^0\bar B^0 mesons from Υ(4S)\Upsilon(4S) decay exhibit EPR type non-local particle-antiparticle (flavor) correlation. It is possible to write down Bell Inequality (in the CHSH form: S2S\le2) to test the non-locality assumption of EPR. Using semileptonic B0B^0 decays of Υ(4S)\Upsilon(4S) at Belle experiment, a clear violation of Bell Inequality in particle-antiparticle correlation is observed: S=2.725+-0.167(stat)+-0.092(syst)Comment: Conference Proceeding for Garda Lake Workshop 2003 "Mysteries, Puzzles and Paradoxes in Quantum Mechanics
    corecore