136 research outputs found

    Histidine-rich glycoprotein as a novel predictive biomarker of postoperative complications in intensive care unit patients: a prospective observational study

    Get PDF
    Background Decrease in histidine-rich glycoprotein (HRG) was reported as a cause of dysregulation of the coagulation-fibrinolysis and immune systems, leading to multi-organ failure, and it may be a biomarker for sepsis, ventilator-associated pneumonia, preeclampsia, and coronavirus disease 2019. However, the usefulness of HRG in perioperative management remains unclear. This study aimed to assess the usefulness of HRG as a biomarker for predicting postoperative complications. Methods This was a single-center, prospective, observational study of 150 adult patients who were admitted to the intensive care unit after surgery. Postoperative complications were defined as those having a grade II or higher in the Clavien-Dindo classification, occurring within 7 days after surgery. The primary outcome was HRG levels in the patients with and without postoperative complications. The secondary outcome was the ability of HRG, white blood cell, C-reactive protein, procalcitonin, and presepsin to predict postoperative complications. Data are presented as number and median (interquartile range). Results The incidence of postoperative complications was 40%. The HRG levels on postoperative day 1 were significantly lower in patients who developed postoperative complications (n = 60; 21.50 [18.12-25.74] mu g/mL) than in those who did not develop postoperative complications (n = 90; 25.46 [21.05-31.63] mu g/mL). The Harrell C-index scores for postoperative complications were HRG, 0.65; white blood cell, 0.50; C-reactive protein, 0.59; procalcitonin, 0.73; and presepsin, 0.73. HRG was independent predictor of postoperative complications when adjusted for age, the presence of preoperative cardiovascular comorbidities, American Society of Anesthesiologists Physical Status Classification, operative time, and the volume of intraoperative bleeding (adjusted hazard ratio = 0.94; 95% confidence interval, 0.90-0.99). Conclusions The HRG levels on postoperative day 1 could predict postoperative complications. Hence, HRG may be a useful biomarker for predicting postoperative complications

    Ionic liquids enable accurate chromatographic analysis of polyelectrolytes

    Get PDF
    The molecular weight distribution of polyelectrolytes was determined with high performance liquid chromatography using ionic liquids as eluents, because the electrostatic repulsion among polyelectrolytes was entirely suppressed in it. A mixed sample of polycation and polyanion was also analysed to detect them independently. © The Royal Society of Chemistry.Embargo Period 12 month

    Direct HPILC Analysis on Cellulose Depolymerisation in Ionic Liquids

    Get PDF
    Changes of average molecular weight and molecular weight distribution of cellulose in a polar ionic liquid (IL) were analysed with high performance liquid chromatography using a polar IL as an eluent (HPILC). 1-Ethyl-3-methylimidazolium methylphosphonate was used as the polar IL. As a model of partly depolymerised cellulose, a mixed sample composed of cellulose and cello-oligosaccharides (glucose, cellobiose, cellotetraose, and cellohexaose) was evaluated to test the resolution of the HPILC. In the resulting chromatograms, the corresponding peaks for each saccharide were found. Hydrolysed cellulose catalysed by a cellulase mixture in water was then prepared and dried. Then, this was dissolved in the polar IL to analyse its molecular weight distribution. The molecular weight distribution changed depending on the enzymatic reaction time. The peak for cellulose was found to decrease with the increase of the peak for cellobiose, and subsequently the peak for cellobiose decreased with the increase of that for glucose. In addition, cellulose oligomers except for cellobiose were scarcely observed, showing the catalytic feature of cellulase. Depolymerisation of cellulose in the polar IL was also carried out using ultrasonication. The peak for cellulose in the HPILC profiles shifted to a higher retention volume side and broadened with the sonication time, strongly suggesting random depolymerisation of cellulose. Thus, HPILC was confirmed to be effective for the dynamic analysis of cellulose depolymerisation. © The Royal Society of Chemistry 2013.Embargo Period 12 month

    1H NMR Evaluation of Polar and Nondeuterated Ionic Liquids for Selective Extraction of Cellulose and Xylan from Wheat Bran

    Get PDF
    Cellulose and xylan, extracted from wheat bran with polar ionic liquids (ILs), were quantified using 1H NMR spectroscopy. Both No-D NMR and solvent suppression techniques were applied to realize direct analysis of extracts in nondeuterated ILs. As models of extracts, mixtures of cellulose and xylan dissolved in ILs were measured with 1H NMR spectroscopy. There was a linear relation between mixing ratio and specific peak area of each polysaccharide. Extracts from bran in ILs were analyzed with the obtained calibration curve. This NMR analysis was confirmed to be applicable to three representative ILs used for extraction of polysaccharides. A relation between extracted amount and extraction conditions was obtained. © 2014 American Chemical Society.Embargo Period 12 month

    Histidine-rich glycoprotein as a prognostic biomarker for sepsis

    Get PDF
    Various biomarkers have been proposed for sepsis; however, only a few become the standard. We previously reported that plasma histidine-rich glycoprotein (HRG) levels decreased in septic mice, and supplemental infusion of HRG improved survival in mice model of sepsis. Moreover, our previous clinical study demonstrated that HRG levels in septic patients were lower than those in noninfective systemic inflammatory response syndrome patients, and it could be a biomarker for sepsis. In this study, we focused on septic patients and assessed the differences in HRG levels between the non-survivors and survivors. We studied ICU patients newly diagnosed with sepsis. Blood samples were collected within 24 h of ICU admission, and HRG levels were determined using an enzyme-linked immunosorbent assay. Ninety-nine septic patients from 11 institutes in Japan were included. HRG levels were significantly lower in non-survivors (n=16) than in survivors (n=83) (median, 15.1 [interquartile ranges, 12.7-16.6] vs. 30.6 [22.1-39.6] mu g/ml; p<0.01). Survival analysis revealed that HRG levels were associated with mortality (hazard ratio 0.79, p<0.01), and the Harrell C-index (predictive power) for HRG was 0.90. These results suggested that HRG could be a novel prognostic biomarker for sepsis
    corecore