3 research outputs found

    Green synthesis of highly functionalized heterocyclic bearing pyrazole moiety for cancer-targeted chemo/radioisotope therapy

    No full text
    Abstract New derivatives of heterocyclic bearing pyrazole moiety were synthesized (eight new compounds from 2 to 9) via green synthesis methods (microwave-assisted and grinding techniques). 4,6-Diamino-1,3-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (2) shows high anti-cancer activity against both HepG2 and HCT-116 with IC50 of 9.2 ± 2.8 and 7.7 ± 1.8 µM, respectively, which referenced to 5-Fu which is showing activity of 7.86 ± 0.5 and 5.35 ± 0.3 against both HepG2 and HCT-116, respectively. The cytotoxic activity against HCT-116 and HepG2 was slightly decreased and slightly increased, respectively, by a different pyrazole moiety (compound 5). Pharmacokinetics of compound 2 was carried out using the radioiodination technique in tumour-bearing Albino mice which shows good uptake at the tumour site. The biodistribution showed high accumulation in tumour tissues with a ratio of 13.7% ID/g organ after one hour in comparison with 2.97% ID/g organ at normal muscle at the same time point. As I-131 has maximum beta and gamma energies of 606.3 and 364.5 keV, respectively, therefore the newly synthesized compound 2 may be used for chemotherapy and TRT

    Novel pyridine bearing pentose moiety-based anticancer agents: design, synthesis, radioiodination and bioassessments

    No full text
    Abstract Pyridine compounds are one of the most important heterocyclic derivatives showing wide ranges in biological and pharmacological activities. Green chemistry eliminates or reduces the generation of hazardous compounds. It prevents pollution at a molecular level. The microwave technique used in heterocyclic compound synthesis is also an important branch of green chemistry techniques. In this study, we report designing and synthesizing a new pyridine-bearing pentose moiety via a one-pot multicomponent reaction using D-glucose and also investigate its behavior and reactivity toward some simple and heterocyclic amino derivatives. The chemical structures of the synthesized compounds were characterized and tested for their cytotoxic activities. Some of the test compounds exhibited slight to high cytotoxic activities against Caco2 (colon cancer) cells, HepG2 (hepatocellular carcinoma) cells and MCF-7 (human breast cancer) cells by MTT assay. The results showed clearly that compound 4 and compound 8 displayed strongest to moderate cytotoxic activity against the HepG2, Caco2 and MCF-7 respectively and compound 1 showed good activity against MCF-7 in comparison to the standard anticancer drug doxorubicin. These data were by cytopathological examination. An in-vivo radioactive tracing study of compound 4 proved its targeting ability to sarcoma cells in a tumor-bearing mice model. Our findings suggest that the synthesized compounds may be promising candidates as novel anticancer agents

    Design, Green Synthesis and Tailoring of Vitamin E TPGS Augmented Niosomal Nano-Carrier of Pyrazolopyrimidines as Potential Anti-Liver and Breast Cancer Agents with Accentuated Oral Bioavailability

    No full text
    VEGF plays a crucial role in cancer development, angiogenesis and progression, principally liver and breast cancer. It is vital to uncover novel chemical candidates of VEGFR inhibitors to develop more potent anti-breast and anti-liver cancer agents than the currently available candidates, sorafenib and regorafenib, that face resistance obstacles and severe side effects. Herein, nine pyrazolopyrimidine derivatives were designed, synthesized as sorafenib and regorafenib analogues and screened for their in vitro cytotoxic and growth inhibition activities against four human cancer cell lines, namely breast cancer (Michigan Cancer Foundation-7 (MCF-7), hepatocellular carcinoma (HCC) type (HepG2), lung carcinoma (A-549) and human colorectal carcinoma-116 (HCT-116)). Among the tested compounds, compounds 1, 2a, 4b and 7 showed the uppermost cytotoxic activities against all aforementioned cell lines with IC50 estimates varying from 6 to 50 µM, among which compound 7 showed the best inhibitory activity on all tested compounds. Stunningly, compound 7 showed the best significant inhibition of the VEGFR-2 protein expression level (72.3%) as compared to the control and even higher than that produced with sorafenib and regorafenib (70.4% and 55.6%, respectively). Modeling studies provided evidence for the possible interactions of the synthesized compounds with the key residues of the ATP binding sites on the hinge region and the “DFG out” motif of VEGFR-2 kinase. Collectively, our present study suggests that pyrazolopyrimidine derivatives are a novel class of anti-cancer drug candidates to inhibit VEGF-VEGFR function. Aspiring to promote constrained aqueous solubility, hence poor oral bioavailability of the developed lead molecule, 7 and 2a-charged D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) surface-coated niosomes were successfully constructed, adopting a thin film hydration technique striving to overcome these pitfalls. A 23 full factorial design was involved in order to investigate the influence of formulation variables: type of surfactant, either Span 60 or Span 40; surfactant:cholesterol ratio (8:2 or 5:5) along with the amount of TPGS (25 mg or 50 mg) on the characteristics of the nanosystem. F2 and S2 were picked as the optimum formula for compounds 2a and 7 with desirability values of 0.907 and 0.903, respectively. In addition, a distinguished improvement was observed in the compound’s oral bioavailability and cytotoxic activity after being included in the nano-TPGS-coated niosomal system relative to the unformulated compound. The nano-TPGS-coated niosomal system increased the hepatocellular inhibitory activity four times fold of compound 7a (1.6 µM) and two-fold of 2a (3 µM) relative to the unformulated compounds (6 µM and 6.2 µM, respectively)
    corecore