20 research outputs found

    Trait mapping in diverse arthropods by bulked segregant analysis

    Get PDF
    Bulked segregant analysis (BSA) is a cross-based method for genetic mapping in sexually reproducing organisms. The method's use of bulked (pooled) samples markedly reduces the genotyping effort associated with traditional linkage mapping studies. Further, it can be applied to species with life histories or physical attributes (as for micro-insects) that render genetic mapping with other methods impractical. Recent studies in both insects and mites have revealed that advanced BSA experimental designs can resolve causal loci to narrow genomic intervals, facilitating follow-up investigations. As high-quality genomes become more widely available, BSA methods are poised to become an increasingly important tool for the rapid mapping of both monogenic and polygenic traits in diverse arthropod species

    High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides

    Get PDF
    Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific

    Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals

    Get PDF
    Keto-carotenoids contribute to many important traits in animals, including vision and coloration. In a great number of animal species, keto-carotenoids are endogenously produced from carotenoids by carotenoid ketolases. Despite the ubiquity and functional importance of keto-carotenoids in animals, the underlying genetic architectures of their production have remained enigmatic. The body and eye colorations of spider mites (Arthropoda: Chelicerata) are determined by β-carotene and keto-carotenoid derivatives. Here, we focus on a carotenoid pigment mutant of the spider mite Tetranychus kanzawai that, as shown by chromatography, lost the ability to produce keto-carotenoids. We employed bulked segregant analysis and linked the causal locus to a single narrow genomic interval. The causal mutation was fine-mapped to a minimal candidate region that held only one complete gene, the cytochrome P450 monooxygenase CYP384A1, of the CYP3 clan. Using a number of genomic approaches, we revealed that an inactivating deletion in the fourth exon of CYP384A1 caused the aberrant pigmentation. Phylogenetic analysis indicated that CYP384A1 is orthologous across mite species of the ancient Trombidiformes order where carotenoids typify eye and body coloration, suggesting a deeply conserved function of CYP384A1 as a carotenoid ketolase. Previously, CYP2J19, a cytochrome P450 of the CYP2 clan, has been identified as a carotenoid ketolase in birds and turtles. Our study shows that selection for endogenous production of keto-carotenoids led to convergent evolution whereby cytochrome P450s were independently co-opted in vertebrate and invertebrate animal lineages

    Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae

    Get PDF
    Pesticide resistance arises rapidly in arthropod herbivores, as can host plant adaptation, and both are significant problems in agriculture. These traits have been challenging to study as both are often polygenic and many arthropods are genetically intractable. Here, we examined the genetic architecture of pesticide resistance and host plant adaptation in the two-spotted spider mite, Tetranychus urticae, a global agricultural pest. We show that the short generation time and high fecundity of T. urticae can be readily exploited in experimental evolution designs for high-resolution mapping of quantitative traits. As revealed by selection with spirodiclofen, an acetyl-CoA carboxylase inhibitor, in populations from a cross between a spirodiclofen-resistant and a spirodiclofen-susceptible strain, and which also differed in performance on tomato, we found that a limited number of loci could explain quantitative resistance to this compound. These were resolved to narrow genomic intervals, suggesting specific candidate genes, including acetyl-CoA carboxylase itself, clustered and copy variable cytochrome P450 genes, and NADPH cytochrome P450 reductase, which encodes a redox partner for cytochrome P450s. For performance on tomato, candidate genomic regions for response to selection were distinct from those responding to the synthetic compound and were consistent with a more polygenic architecture. In accomplishing this work, we exploited the continuous nature of allele frequency changes across experimental populations to resolve the existing fragmented T. urticae draft genome to pseudochromosomes. This improved assembly was indispensable for our analyses, as it will be for future research with this model herbivore that is exceptionally amenable to genetic studies

    Maize Inbred Line B96 Is the Source of Large-Effect Loci for Resistance to Generalist but Not Specialist Spider Mites

    Get PDF
    Maize (Zea mays subsp. mays) yield loss from arthropod herbivory is substantial. While the basis of resistance to major insect herbivores has been comparatively well-studied in maize, less is known about resistance to spider mite herbivores, which are distantly related to insects and feed by a different mechanism. Two spider mites, the generalist Tetranychus urticae, and the grass-specialist Oligonychus pratensis, are notable pests of maize, especially during drought conditions. We assessed resistance (antibiosis) to both mites of 38 highly diverse maize lines, including several previously reported to be resistant to one or the other mite species. We found that line B96, as well as its derivatives B49 and B75, were highly resistant to T. urticae. In contrast, neither these three lines, nor any others included in our study, were notably resistant to the specialist O. pratensis. Quantitative trait locus (QTL) mapping with replicate populations from crosses of B49, B75, and B96 to susceptible B73 identified a QTL in the same genomic interval on chromosome 6 for T. urticae resistance in each of the three resistant lines, and an additional resistance QTL on chromosome 1 was unique to B96. Single-locus genotyping with a marker coincident with the chromosome 6 QTL in crosses of both B49 and B75 to B73 revealed that the respective QTL was large-effect; it explained ∼70% of the variance in resistance, and resistance alleles from B49 and B75 acted recessively as compared to B73. Finally, a genome-wide haplotype analysis using genome sequence data generated for B49, B75, and B96 identified an identical haplotype, likely of initial origin from B96, as the source of T. urticae resistance on chromosome 6 in each of the B49, B75, and B96 lines. Our findings uncover the relationship between intraspecific variation in maize defenses and resistance to its major generalist and specialist spider mite herbivores, and we identified loci for use in breeding programs and for genetic studies of resistance to T. urticae, the most widespread spider mite pest of maize

    Doctor of Philosophy

    No full text
    dissertationCarotenoids are vibrant red, yellow, and orange pigments that are responsible for many colorful displays seen throughout all domains of life. In animals, carotenoids are essential for vision and play diverse roles ranging from protection against oxidative stress to sexual selection in birds. While most animals cannot produce their own carotenoids, several arthropod species laterally acquired carotenoid biosynthetic genes from fungi. One of those arthropod species is the two-spotted spider mite Tetranychus urticae, a major herbivorous pest of crop plants that feeds on over a thousand different plant species and has shown resistance to more active ingredients in pesticides than all known arthropods except one. T. urticae is also globally distributed and is particularly successful in temperate zones where it goes into diapause to survive cold winters. The two-spotted spider mite is an excellent organism to further the understanding of carotenoid metabolism in animals. Besides general qualities that make it a good model (such as ease of laboratory use and a short life cycle), deficiencies in most steps of the biosynthetic pathway leading from plant precursors to red-orange, oxidized keto-carotenoids produce easily identifiable color mutants. In addition to carotenoid metabolism, the spider mite species' generalist lifestyle and pest status have facilitated genetic mapping of resistance traits. Despite this, little work has been done on understanding carotenoid metabolism and the genetic response to long-term pesticide selection. Factors shaping the mite's genetics in different parts of the world have also not been addressed. iv I have started to answer these and related research questions in my Ph.D. Among our findings, we determined that endogenously produced carotenoids are required for all mite pigmentation as well as overwintering in the diapause state. We also found a single locus that underlies loss of diapause and that appears to be under selection in many parts of the world. We showed that pesticides with the same mode of action can elicit very different selection responses. And in the course of this work, we developed a method that uses data from a genetic cross to condense the 640-scaffold T. urticae genome assembly into three chromosomes

    Ixodes pacificus ticks maintain embryogenesis and egg hatching after antibiotic treatment of Rickettsia endosymbiont.

    No full text
    Rickettsia is a genus of intracellular bacteria that causes a variety of diseases in humans and other mammals and associates with a diverse group of arthropods. Although Rickettsia appears to be common in ticks, most Rickettsia-tick relationships remain generally uncharacterized. The most intimate of these associations is Rickettsia species phylotype G021, a maternally and transstadially transmitted endosymbiont that resides in 100% of I. pacificus in California. We investigated the effects of this Rickettsia phylotype on I. pacificus reproductive fitness using selective antibiotic treatment. Ciprofloxacin was 10-fold more effective than tetracycline in eliminating Rickettsia from I. pacificus, and quantitative PCR results showed that eggs from the ciprofloxacin-treated ticks contained an average of 0.02 Rickettsia per egg cell as opposed to the average of 0.2 in the tetracycline-treated ticks. Ampicillin did not significantly affect the number of Rickettsia per tick cell in adults or eggs compared to the water-injected control ticks. We found no relationship between tick embryogenesis and rickettsial density in engorged I. pacificus females. Tetracycline treatment significantly delayed oviposition of I. pacificus ticks, but the antibiotic's effect was unlikely related to Rickettsia. We also demonstrated that Rickettsia-free eggs could successfully develop into larvae without any significant decrease in hatching compared to eggs containing Rickettsia. No significant differences in the incubation period, egg hatching rate, and the number of larvae were found between any of the antibiotic-treated groups and the water-injected tick control. We concluded that Rickettsia species phylotype G021 does not have an apparent effect on embryogenesis, oviposition, and egg hatching of I. pacificus

    A molecular-genetic understanding of diapause in spider mites : current knowledge and future directions

    No full text
    During unfavourable conditions, many arthropods have the ability to enter into diapause and synchronize their development and reproduction to seasonal patterns. Diapause or winter hibernation in insects and mites is set off by a number of cues, with photoperiod being the most well-defined and strongest signal. This review focuses on the current knowledge of '-omics' data and the genetics of diapause in the two-spotted spider mite Tetranychus urticae, a member of the family Tetranychidae (Arthropoda: Chelicerata: Arachnida: Acari). This species is a serious polyphagous pest and females undergo a reproductive facultative diapause when immature stages are exposed to long nights. Winter hibernation induces different physiological processes characterized by a metabolic suppression, different energy use, increased stress tolerance and the production of cryoprotectants, all initiated by a complex signal transduction pathway. Keto-carotenoids are known to cause the deeply orange colour typical for diapausing females. Furthermore, research with colour mutants of T. urticae has shown the need for carotenoids with respect to the induction of diapause, even though the molecular-genetic mechanisms underlying these colour phenotypes are still unknown. In addition, marked latitudinal variation in diapause incidence among populations has been observed in nature, with modes of inheritance ranging from recessive to dominant, as well as monogenic to polygenic. We end by highlighting the emerging opportunities for functional studies that aim to unravel the complex factors underlying diapause in spider mites

    A marker gene-based method for identifying the cell-type of origin from single-cell RNA sequencing data

    No full text
    Single-cell RNA sequencing (scRNA-seq) experiments provide opportunities to peer into complex tissues at single-cell resolution. However, insightful biological interpretation of scRNA-seq data relies upon precise identification of cell types. The ability to identify the origin of a cell quickly and accurately will greatly improve downstream analyses. We present Sargent, a transformation-free, cluster-free, single-cell annotation algorithm for rapidly identifying the cell types of origin based on cell type-specific markers. We demonstrate Sargent's high accuracy by annotating simulated datasets. Further, we compare Sargent performance against expert-annotated scRNA-seq data from human organs including PBMC, heart, kidney, and lung. We demonstrate that Sargent retains both the flexibility and biological interpretability of cluster-based manual annotation. Additionally, the automation eliminates the labor intensive and potentially biased user annotation, producing robust, reproducible, and scalable outputs. • Sargent is a transformation-free, cluster-free, single-cell annotation algorithm for rapidly identifying the cell types of origin based on cell type-specific markers. • Sargent retains both the flexibility and biological interpretability of cluster-based manual annotation. • Automation eliminates the labor intensive and potentially biased user annotation, producing robust, reproducible, and scalable outputs

    Kaplan-Meier (time-to-event) plots of the preoviposition period and the incubation periods, and boxplots representing egg hatching rate, and the number of larvae from engorged <i>Ixodes pacificus</i> females.

    No full text
    <p>2A) A Kaplan-Meier plot where each colored line corresponds to the fraction of adult female ticks that had not started laying eggs on a particular day after the ticks were injected with antibiotics or water (control). Vertical dashes on the colored lines represent censorship, where a tick that had not started to lay eggs died and was dropped from the study. The tetracycline group (red) took significantly longer to start laying eggs compared to the rest (<i>P</i><0.05) 2B) A Kaplan-Meier plot where the colored lines represent the proportion of egg samples laid by individual ticks whose eggs had not finished hatching into larvae a certain number of days after oviposition began. 2C) A boxplot showing the hatching rate, or the fraction of tick eggs that successfully hatched into larvae, in the four treatment groups. Each individually colored box represents the hatching rate distribution of eggs laid by each female tick in the group. 2D) A boxplot specifying the distribution of the total number of larvae each female yielded. No significant difference in (C) hatching rate or (D) the number of larvae was present between treatment groups (<i>P</i><0.05). Circles outside the boxes in (C) and (D) represent outliers. The colors in all the plots in the figure correspond to specific treatment groups: blue - ampicillin, yellow - ciprofloxacin, red - tetracycline, green - injection with water (control).</p
    corecore