2,785 research outputs found

    Thermodynamics of Squashed Kaluza-Klein Black Holes and Black Strings -- A Comparison of Reference Backgrounds --

    Full text link
    We investigate thermodynamics constructed on different background reference spacetimes for squashed Kaluza-Klein (SqKK) black hole and electrically charged black string in five-dimensional Einstein-Maxwell system. Two spacetimes are possible to be reference spacetimes giving finite gravitational classical actions: one is four-dimensional Minkowski times a circle and the other is the KK monopole. The boundary of the SqKK black hole can not be matched perfectly to that of the former reference spacetime because of the difference in topology. However, the resultant classical action coincides with that calculated by the counterterm subtraction scheme. The boundary of the KK monopole has the same topology with that of the SqKK black hole and can be matched to the boundary of the black hole perfectly. The resultant action takes different value from the result given by using the former reference spacetime. After a brief review of thermodynamic quantities of the black hole solutions, we calculate thermodynamic potentials relevant for several thermodynamic environments. The most stable state is different for each environment: For example, the KK monopole is the most stable state in isothermal environment with fixed gravitational tension. On the other hand, when the size of the extra-dimension is fixed, the Minkowski times a circle is the most stable. It is shown that these two spacetimes can be reference spacetimes of the five-dimensional black string.Comment: 28 pages; references added, typo corrected;version accepted for publication in Class. Quantum Gra

    Thermal Conductivity of Pr_{1.3-x}La_{0.7}Ce_xCuO_4 Single Crystals and Signatures of Stripes in an Electron-Doped Cuprate

    Full text link
    It was recently demonstrated that the anisotropic phonon heat transport behavior is a good probe of the stripe formation in La_{2-x}Sr_xCuO_4 (LSCO) [X. F. Sun {\it et al.}, Phys. Rev. B {\bf 67}, 104503 (2003)]. Using this probe, we examined an electron-doped cuprate Pr_{1.3-x}La_{0.7}Ce_xCuO_4 (PLCCO) and found that essentially the same features as those in LSCO are observed. Moreover, the in-plane resistivity \rho_{ab} of lightly-doped PLCCO shows metallic behavior (d\rho_{ab}/dT > 0) in the N\'eel ordered state with a mobility comparable to that in LSCO. It is discussed that these peculiar properties in common with LSCO signify the existence of stripes in electron-doped cuprates.Comment: 4 pages, 4 figures, revised version accepted for publication in Phys. Rev. Let

    Intraoperative Tissue Staining of Invaded Oral Carcinoma

    Get PDF
    PATHOLOGY & ONCOLOGY RESEARCH. 14(4):461-465 (2008)journal articl

    Naked singularity resolution in cylindrical collapse

    Full text link
    In this paper, we study the gravitational collapse of null dust in the cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the back-reaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the naked singularity. In this case, although this naked singularity satisfies the strong curvature condition by Kr\'{o}lak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally the singularity completely disappears and the flat spacetime remains.Comment: 17 pages, no figur

    A note on Hawking radiation via complex path analysis

    Full text link
    As long as we neglect backreaction, the Hawking temperature of a given black hole would not depend upon the parameters of the particle species we are considering. In the semiclassical complex path analysis approach of Hawking radiation, this has been verified by taking scalar and Dirac spinors separately for different stationary spacetime metrics. Here we show, in a coordinate independent way that, for an arbitrary spacetime with any number of dimensions, the equations of motion for a Dirac spinor, a vector, spin-22 and spin-32\frac{3}{2} fields reduce to Klein-Gordon equations in the WKB semiclassical limit. We then obtain, under some suitable assumptions, the complex solutions of those resulting scalar equations across the Killing horizon of a stationary spacetime to get a coordinate independent expression for the emission probability identical for all particle species. Finally we consider some explicit examples to demonstrate the validity of that expression.Comment: 12 pages, v2; manuscript divided into sections, many discussions and references adde

    Usefulness of a commercial enzyme-linked immunosorbent assay kit for Candida mannan antigen for detecting Candida in oral rinse solutions

    Get PDF
    ArticleORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTOLOGY. 107(4):531-534 (2009)journal articl
    • …
    corecore