4,322 research outputs found

    Four-quark final state in W-pair production: Case of signal and background

    Get PDF
    We discuss theoretical predictions for W-pair production and decay at LEP2 and higher energies in a form suitable for comparison with raw data. We present a practical framework for calculating uncertainties of predictions given by the KORALW and grc4f Monte Carlo programs. As an example we use observables in the ssˉccˉs\bar s c\bar c decay channel: the total four-quark (four-jet) cross section and two-quark/jet invariant-mass distribution and cross section, in the case when the other two may escape detection. Effects of QED bremsstrahlung, effective couplings, running W and Z widths, Coulomb interaction and the complete tree level set of diagrams are discussed. We also revisit the question of technical precision of the new version 1.21 of the KORALW Monte Carlo code as well as of version 1.2(26) of the grc4f one. Finally we find predictions of the two programs to have an overall physical uncertainty of 2%. As a side result we show, on the example of an ssˉs\bar s invariant mass distribution, the strong interplay of spin correlations and detector cut-offs in the case of four-fermion final states.Comment: 26 pages, LaTe

    Beam polarization effects on top-pair production at the ILC

    Full text link
    Full one-loop electroweak-corrections for an e−e+→ttˉe^-e^+\rightarrow t \bar{t} process associated with sequential t→bμνμt\rightarrow b \mu\nu_\mu decay are discussed. At the one-loop level, the spin-polarization effects of the initial electron and positron beams are included in the total and differential cross sections. A narrow-width approximation is used to treat the top-quark production and decay while including full spin correlations between them. We observed that the radiative corrections due to the weak interaction have a large polarization dependence on both the total and differential cross sections. Therefore, experimental observables that depend on angular distributions such as the forward-backward asymmetry of the top production angle must be treated carefully including radiative corrections. We also observed that the energy distribution of bottom quarks is majorly affected by the radiative corrections.Comment: 15 pages, 8 figure

    Propositional Encoding of Constraints over Tree-Shaped Data

    Full text link
    We present a functional programming language for specifying constraints over tree-shaped data. The language allows for Haskell-like algebraic data types and pattern matching. Our constraint compiler CO4 translates these programs into satisfiability problems in propositional logic. We present an application from the area of automated analysis of (non-)termination of rewrite systems
    • …
    corecore