13 research outputs found

    A Zebrafish Model of Roberts Syndrome Reveals That Esco2 Depletion Interferes with Development by Disrupting the Cell Cycle

    Get PDF
    The human developmental diseases Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS) are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heterozygous mutations in NIPBL or cohesin subunits SMC1A and SMC3, and RBS is caused by homozygous mutations in ESCO2. The genetic cause of both CdLS and RBS reside within the chromosome cohesion apparatus, and therefore they are collectively known as “cohesinopathies”. However, the two syndromes have distinct phenotypes, with differences not explained by their shared ontology. In this study, we have used the zebrafish model to distinguish between developmental pathways downstream of cohesin itself, or its acetylase ESCO2. Esco2 depleted zebrafish embryos exhibit features that resemble RBS, including mitotic defects, craniofacial abnormalities and limb truncations. A microarray analysis of Esco2-depleted embryos revealed that different subsets of genes are regulated downstream of Esco2 when compared with cohesin subunit Rad21. Genes downstream of Rad21 showed significant enrichment for transcriptional regulators, while Esco2-regulated genes were more likely to be involved the cell cycle or apoptosis. RNA in situ hybridization showed that runx1, which is spatiotemporally regulated by cohesin, is expressed normally in Esco2-depleted embryos. Furthermore, myca, which is downregulated in rad21 mutants, is upregulated in Esco2-depleted embryos. High levels of cell death contributed to the morphology of Esco2-depleted embryos without affecting specific developmental pathways. We propose that cell proliferation defects and apoptosis could be the primary cause of the features of RBS. Our results show that mutations in different elements of the cohesion apparatus have distinct developmental outcomes, and provide insight into why CdLS and RBS are distinct diseases

    A proposed obstacle sensor for a Mars rover

    No full text

    Synthesis and characterization of chitosan/dextran-based hydrogels for surgical use

    No full text
    A series of hydrogels were formed from the reaction between an amine functionalized succinyl chitosan and an oxidized dextran. The properties and rate of formation of the gel were related to both the amine and aldehyde levels of the precursors. These levels could be readily changed by altering the reaction conditions, and allowed good control of the gel properties. Oxidation of the dextran with periodate was accompanied by chain scission and a large reduction in molecular weight. The gel showed excellent haemostatic properties and reduction of adhesions in animal models. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.G. Liu, Z. Shi, T. Kuriger, L.R. Hanton, J. Simpson, S.C. Moratti, B.H. Robinson, T. Athanasiadis, R. Valentine, P.J. Wormald, S. Robinso
    corecore