429 research outputs found
On hydrogen bond correlations at high pressures
In situ high pressure neutron diffraction measured lengths of O H and H O
pairs in hydrogen bonds in substances are shown to follow the correlation
between them established from 0.1 MPa data on different chemical compounds. In
particular, the conclusion by Nelmes et al that their high pressure data on ice
VIII differ from it is not supported. For compounds in which the O H stretching
frequencies red shift under pressure, it is shown that wherever structural data
is available, they follow the stretching frequency versus H O (or O O) distance
correlation. For compounds displaying blue shifts with pressure an analogy
appears to exist with improper hydrogen bonds.Comment: 12 pages,4 figure
Shimura varieties in the Torelli locus via Galois coverings of elliptic curves
We study Shimura subvarieties of obtained from families of
Galois coverings where is a smooth complex
projective curve of genus and . We give the complete list
of all such families that satisfy a simple sufficient condition that ensures
that the closure of the image of the family via the Torelli map yields a
Shimura subvariety of for and for all and
for and . In a previous work of the first and second author
together with A. Ghigi [FGP] similar computations were done in the case .
Here we find 6 families of Galois coverings, all with and
and we show that these are the only families with satisfying this
sufficient condition. We show that among these examples two families yield new
Shimura subvarieties of , while the other examples arise from
certain Shimura subvarieties of already obtained as families of
Galois coverings of in [FGP]. Finally we prove that if a family
satisfies this sufficient condition with , then .Comment: 18 pages, to appear in Geometriae Dedicat
Constraining symmetron fields with atom interferometry
We apply the new constraints from atom-interferometry searches for screening mechanisms to the symmetron model, finding that these experiments exclude a previously unexplored region of the parameter space. We discuss the possibility of networks of domain walls forming in the vacuum chamber, and how this could be used to discriminate between models of screening
Elastomeric spring actuator using nylon wires
Medical devices are designed for collaboration with the human body, which makes the steps to create them increasingly more complex if the device is to be implanted. Soft robots have the unique potential of meeting both the mechanical compliance with the interacting tissues and the controlled functionality needed for a repair or replacement. Soft devices that fulfill fundamental mechanical roles are needed as parts of soft robots in order to carry out desired tasks. As the medical devices become increasingly low-profile, soft devices must feature multi-functionality that is embedded in the structure. A device embedded with nylon actuators allows for the controlled collapsing of an elastomeric spring by compression alone or compression and twisting. In this paper we present the concept of a novel elastomeric spring, its fabrication and mechanical characterization
Effect of Hypoxia on Expression of Selected Proteins Involved in Regulation of Apoptotic Activity in Striatum of Newborn Piglets
The levels of selected neuroregulatory proteins that inhibit or promote apoptotic cell death were measured in the striatum of piglets subjected to precisely controlled 1 h hypoxic insult followed by 0, 2 and 4 h recovery and compared to sham operated animals. The anti-apoptotic proteins: there were increases in Survivin at 0 (157%, P = 0.031) and 4 h (171%, P = 0.033), in Bcl-XL at 0 (138%, P = 0.028) and 4 h (143%, P = 0.007), in VEGF at 4 h (185%, P = 0.019) and Hsp27 at 2 h (144%, P = 0.05) and 4 h (143%, P = 0.05). The pro-apoptotic proteins: caspases-1 and 7 increased at 4 h (135%, P = 0.05) and (129%, P = 0.038), respectively. Bim increased after 4 h (115%, P = 0.028), Apoptosis Inducing Factor after 2 h (127%, P = 0.048) and Calpain after 4 h (143% of control, P = 0.04). Hypoxia causes increase in levels of both anti- and pro-apoptotic proteins. Their relative activity determines the outcome in terms of cell damage and neuronal deficit
Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4
Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional condi- tions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4). Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides), palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242). Inflammatory indicators of TLR4 activation (IL-6 and TNFα) and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho- PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein syn- thesis in skeletal muscle in part by induction of ER stress
Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response
<p>Abstract</p> <p>Background</p> <p>Despite advances in the understanding of diabetic retinopathy, the nature and time course of molecular changes in the retina with diabetes are incompletely described. This study characterized the functional and molecular phenotype of the retina with increasing durations of diabetes.</p> <p>Results</p> <p>Using the streptozotocin-induced rat model of diabetes, levels of retinal permeability, caspase activity, and gene expression were examined after 1 and 3 months of diabetes. Gene expression changes were identified by whole genome microarray and confirmed by qPCR in the same set of animals as used in the microarray analyses and subsequently validated in independent sets of animals. Increased levels of vascular permeability and caspase-3 activity were observed at 3 months of diabetes, but not 1 month. Significantly more and larger magnitude gene expression changes were observed after 3 months than after 1 month of diabetes. Quantitative PCR validation of selected genes related to inflammation, microvasculature and neuronal function confirmed gene expression changes in multiple independent sets of animals.</p> <p>Conclusion</p> <p>These changes in permeability, apoptosis, and gene expression provide further evidence of progressive retinal malfunction with increasing duration of diabetes. The specific gene expression changes confirmed in multiple sets of animals indicate that pro-inflammatory, anti-vascular barrier, and neurodegenerative changes occur in tandem with functional increases in apoptosis and vascular permeability. These responses are shared with the clinically documented inflammatory response in diabetic retinopathy suggesting that this model may be used to test anti-inflammatory therapeutics.</p
- …