84 research outputs found
New inclination changing eclipsing binaries in the Magellanic Clouds
Context: Multiple stellar systems are unique laboratories for astrophysics.
Analysis of their orbital dynamics may reveal invaluable information about the
physical properties of the participating stars. Unfortunately, there are only a
few known and well described multiple systems, this is even more so for systems
located outside the Milky Way galaxy. A particularly interesting situation
occurs when the inner binary in a compact triple system is eclipsing. This is
because the stellar interaction, typically resulting in precession of orbital
planes, may be observable as a variation of depth of the eclipses on a long
timescale. Aims: We aim to present a novel method to determine compact triples
using publicly available photometric data from large surveys. Here we apply it
to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database.
Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the
goal to identify those for which the orbital inclination varies in time.
Archival LCs of the selected systems, when complemented by our own observations
with Danish 1.54m telescope, were thoroughly analyzed using the PHOEBE program.
Time dependence of the EB's inclination was described using the theory of
orbital-plane precession. By observing the parameter-dependence of the
precession rate, we were able to constrain the third companion mass and its
orbital period around EB. Results: We identified 58 candidates of new compact
triples in Magellanic Clouds. This is the largest published sample of such
systems so far. Eight of them were analyzed thoroughly and physical parameters
of inner binary were determined together with an estimation of basic
characteristics of the third star. These data may provide important clues about
stellar formation mechanisms for objects with different metalicity than found
in our galactic neighborhood.Comment: Accepted for publication in Astronomy and Astrophysic
A search for peculiar stars in the open cluster Hogg 16
The study of chemically peculiar (CP) stars in open clusters provides
valuable information about their evolutionary status. Their detection can be
performed using the photometric system, which maps a characteristic
flux depression at \AA. This paper aims at studying the
occurrence of CP stars in the earliest stages of evolution of a stellar
population by applying this technique to Hogg 16, a very young Galactic open
cluster (about 25 Myr). We identified several peculiar candidates: two B-type
stars with a negative index (CD-60 4701, CPD-60 4706) are likely
emission-line (Be) stars, even though spectral measurements are necessary for a
proper classification of the second one; a third object (CD-60 4703),
identified as a Be candidate in literature, appears to be a background B-type
supergiant with no significant index, which does not rule out the
possibility that it is indeed peculiar as the normality line of for
supergiants has not been studied in detail yet. A fourth object (CD-60 4699)
appears to be a magnetic CP star of 8 M, but obtained spectral data
seem to rule out this hypothesis. Three more magnetic CP star candidates are
found in the domain of early F-type stars. One is a probable nonmember and
close to the border of significance, but the other two are probably pre-main
sequence cluster objects. This is very promising, as it can lead to very strong
constraints to the diffusion theory. Finally, we derived the fundamental
parameters of Hogg 16 and provide for the first time an estimate of its metal
content.Comment: Accepted for publication in New Astronomy. 9 pages, 4 figures, and 4
tables. A complete data table is available via CDS or upon request from the
corresponding autho
First apsidal motion and light curve analysis of 162 eccentric eclipsing binaries from LMC
We present an extensive study of 162 early-type binary systems located in the
LMC galaxy that show apsidal motion and have never been studied before. For the
ample systems, we performed light curve and apsidal motion modelling for the
first time. These systems have a median orbital period of 2.2 days and typical
periods of the apsidal motion were derived to be of the order of decades. We
identified two record-breaking systems. The first, OGLE LMC-ECL-22613, shows
the shortest known apsidal motion period among systems with main sequence
components (6.6 years); it contains a third component with an orbital period of
23 years. The second, OGLE LMC-ECL-17226, is an eccentric system with the
shortest known orbital period (0.9879 days) and with quite fast apsidal motion
period (11 years). Among the studied systems, 36 new triple-star candidates
were identified based on the additional period variations. This represents more
than 20% of all studied systems, which is in agreement with the statistics of
multiples in our Galaxy. However, the fraction should only be considered as a
lower limit of these early-type stars in the LMC because of our method of
detection, data coverage, and limited precision of individual times of
eclipses.Comment: 24 pages, 18 figures, 5 tables, published in 2020A&A...640A..33
Science with a small two-band UV-photometry mission III: Active Galactic Nuclei and nuclear transients
In this review (the third in the series focused on a small two-band
UV-photometry mission), we assess possibilities for a small UV two-band
photometry mission in studying accreting supermassive black holes (SMBHs; mass
range -). We focus on the following
observational concepts: (i) dedicated monitoring of selected type-I Active
Galactic Nuclei (AGN) in order to measure the time delay between the far-UV,
the near-UV, and other wavebands (X-ray and optical), (ii) nuclear transients
including (partial) tidal disruption events and repetitive nuclear transients,
and (iii) the study of peculiar sources, such as changing-look AGN, hollows and
gaps in accretion disks, low-luminosity AGN, and candidates for
Intermediate-Mass Black Holes (IMBHs; mass range -)
in galactic nuclei. For tidal disruption events (TDEs), high-cadence UV
monitoring is crucial for distinguishing among different scenarios for the
origin of the UV emission. The small two-band UV space telescope will also
provide the information about the near- and far-UV continuum variability for
rare transients, such as repetitive partial TDEs and jetted TDEs. We also
discuss the possibilities to study and analyze sources with non-standard
accretion flows, such as AGN with gappy disks, low-luminosity active galactic
nuclei with intermittent accretion, and SMBH binaries potentially involving
intermediate-mass black holes.Comment: Submitted to Space Science Review
Quick Ultra-VIolet Kilonova surveyor (QUVIK)
We present a near-UV space telescope on a ~70kg micro-satellite with a
moderately fast repointing capability and a near real-time alert communication
system that has been proposed in response to a call for an ambitious Czech
national mission. The mission, which has recently been approved for Phase 0, A,
and B1 study shall measure the brightness evolution of kilonovae, resulting
from mergers of neutron stars in the near-UV band and thus it shall distinguish
between different explosion scenarios. Between the observations of transient
sources, the satellite shall perform observations of other targets of interest,
a large part of which will be chosen in open competition.Comment: SPIE Astronomical Telescopes and Instrumentatio
Science with a small two-band UV-photometry mission II: Observations of stars and stellar systems
We outline the impact of a small two-band UV-photometry satellite mission on
the field of stellar physics, magnetospheres of stars, binaries, stellar
clusters, interstellar matter, and exoplanets. On specific examples of
different types of stars and stellar systems, we discuss particular
requirements for such satellite missions in terms of specific mission
parameters such as bandpass, precision, cadence, and mission duration. We show
that such a mission may provide crucial data not only for hot stars that emit
most of their light in UV, but also for cool stars, where UV traces their
activity. This is important, for instance, for exoplanetary studies, because
the level of stellar activity influences habitability. While the main asset of
the two-band UV mission rests in time-domain astronomy, an example of open
clusters proves that such a mission would be important also for the study of
stellar populations. Properties of the interstellar dust are best explored when
combining optical and IR information with observations in UV. It is well known
that dust absorbs UV radiation efficiently. Consequently, we outline how such a
UV mission can be used to detect eclipses of sufficiently hot stars by various
dusty objects and study disks, rings, clouds, disintegrating exoplanets or
exoasteroids. Furthermore, UV radiation can be used to study the cooling of
neutron stars providing information about the extreme states of matter in the
interiors of neutron stars and used for mapping heated spots on their surfaces.Comment: Submitted to Space Science Review
- …