28 research outputs found

    Spin-Pumping-Induced Inverse Spin Hall Effect in Nb/Ni80Fe20 Bilayers and its Strong Decay Across the Superconducting Transition Temperature

    Get PDF
    We quantify the spin Hall angle θSH and spin-diffusion length lsd of Nb from inverse spin Hall effect (ISHE) measurements in Nb/Ni80Fe20 bilayers under ferromagnetic resonance. By varying the Nb thickness tNb and comparing to a Ni80Fe20/Pt reference sample, room temperature values of θSH and lsd for Nb are estimated to be approximately -0.001 and 30 nm, respectively. We also investigate the ISHE as a function of temperature T for different tNb. Above the superconducting transition temperature Tc of Nb, a clear tNb-dependent T evolution of the ISHE is observed whereas below Tc, the ISHE voltage drops rapidly and is below the sensitivity of our measurement setup at a lower T. This suggests the strong decay of the quasiparticle (QP) charge-imbalance relaxation length across Tc, as supported by an additional investigation of the ISHE in a different sample geometry along with model calculation. Our finding suggests careful consideration should be made when developing superconductor spin Hall devices that intend to utilize QP-mediated spin-to-charge interconversion.This work is supported by EPSRC Programme Grant EP/N017242/1

    Exchange-field enhancement of superconducting spin pumping

    Get PDF
    A recent ferromagnetic resonance study [Jeon et al., Nat. Mater. 17, 499 (2018)] has reported that spin pumping into a singlet superconductor (Nb) can be greatly enhanced over the normal state when the Nb is coupled to a large spin-orbit-coupling (SOC) spin sink such as Pt. This behavior has been explained in terms of the generation of spin-polarized triplet supercurrents via SOC at the Nb/Pt interface, acting in conjunction with a nonlocally induced magnetic exchange field. Here we report the effect of adding a ferromagnet (Fe) to act as an internal source of an additional exchange field to the adjacent Pt spin sink. This dramatically enhances the spin pumping efficiency in the superconducting state compared with either Pt and Fe separately, demonstrating the critical role of the exchange field in generating superconducting spin currents in the Nb

    Abrikosov vortex nucleation and its detrimental effect on superconducting spin pumping in Pt/Nb/Ni80Fe20/Nb/Pt proximity structures

    Get PDF
    We report Abrikosov vortex nucleation in Pt / Nb / Ni 80 Fe 20 / Nb / Pt proximity-coupled structures under oblique ferromagnetic resonance that turns out to be detrimental to superconducting spin pumping. By measuring an out-of-plane field-angle θ H dependence and comparing with Pt-absent control samples, we show that as θ H increases, the degree of enhancement (suppression) of spin pumping efficiency in the superconducting state for the Pt-present (Pt-absent) sample diminishes and it reverts to the normal state value at θ H = 90 ∘ . This can be explained in terms of a substantial out-of-plane component of the resonance field for the Ni 80 Fe 20 layer (with in-plane magnetization anisotropy and high aspect ratio) that approaches the upper critical field of the Nb, turning a large fraction of the singlet superconductor volume into the normal state

    Spin-orbit coupling suppression and singlet-state blocking of spin-triplet Cooper pairs

    Get PDF
    An inhomogeneous magnetic exchange field at a superconductor/ferromagnet interface converts spin-singlet Cooper pairs to a spin-polarized triplet state. Although the decay envelope of triplet pairs within ferromagnetic materials is well studied, little is known about their decay in nonmagnetic metals and superconductors and, in particular, in the presence of spin-orbit coupling (SOC). Here, we investigate devices in which singlet and triplet supercurrents propagate into the s-wave superconductor Nb. In the normal state of Nb, triplet supercurrents decay over a distance of 5 nm, which is an order of magnitude smaller than the decay of spin-singlet pairs due to the SOC. In the superconducting state of Nb, triplet supercurrents are not able to couple with the singlet wave function and are thus blocked by the absence of available equilibrium states in the singlet gap. The results offer insight into the dynamics between s-wave singlet and s-wave triplet states

    Controlling spin pumping into superconducting Nb by proximity-induced spin-triplet Cooper pairs

    Get PDF
    Proximity-induced long-range spin-triplet supercurrents, important for the field of superconducting spintronics, are generated in superconducting/ferromagnetic heterostructures when interfacial magnetic inhomogeneities responsible for spin mixing and spin flip scattering are present. The multilayer stack Nb/Cr/Fe/Cr/Nb has been shown to support such currents when fabricated into Josephson junction devices. However, creating pure spin currents controllably in superconductors outside of the Josephson junction architecture is a bottleneck to progress. Recently, ferromagnetic resonance was proposed as a possible direction, the signature of pure supercurrent creation being an enhancement of the Gilbert damping below the superconducting critical temperature, but the necessary conditions are still poorly established. Here, we demonstrate that pumping pure spin currents into a superconductor in the presence of an external magnetic field is only possible when conditions supporting proximity-induced spin-triplet effects are satisfied. Our study is an important step forward for pure spin supercurrent creation, considerably advancing the field of superconducting spintronics

    Effect of Meissner Screening and Trapped Magnetic Flux on Magnetization Dynamics in Thick Nb/Ni80Fe20/Nb Trilayers

    Get PDF
    We investigate the influence of Meissner screening and trapped magnetic flux on magnetization dynamics for a Ni80Fe20 film sandwiched between two thick Nb layers (100 nm) using broadband (5–20 GHz) ferromagnetic resonance (FMR) spectroscopy. Below the superconducting transition Tc of Nb, significant zero-frequency line broadening (5–6 mT) and dc-resonance field shift (50 mT) to a low field are both observed if the Nb thickness is comparable to the London penetration depth of Nb films (≥100 nm). We attribute the observed peculiar behaviors to the increased incoherent precession near the Ni80Fe20/Nb interfaces and the effectively focused magnetic flux in the middle Ni80Fe20 caused by strong Meissner screening and (defect-)trapped flux of the thick adjacent Nb layers. This explanation is supported by static magnetic properties of the samples and comparison with FMR data on thick Nb/Ni80Fe20 bilayers. Great care should, therefore, be taken in the analysis of FMR response in ferromagnetic Josephson structures with thick superconductors, a fundamental property for high-frequency device applications of spin-polarized supercurrents

    Spin transport parameters of NbN thin films characterized by spin pumping experiments

    Get PDF
    We present measurements of ferromagnetic resonance driven spin pumping and inverse spin Hall effect in NbN/Y3Fe5O12 (YIG) bilayers. A clear enhancement of the (effective) Gilbert damping constant of the thin-film YIG was observed due to the presence of the NbN spin sink. By varying the NbN thickness and employing spin-diffusion theory, we have estimated the room-temperature values of the spin-diffusion length and the spin Hall angle in NbN to be 14 nm and −1.1×10−2, respectively. Furthermore, we have determined the spin mixing conductance of the NbN/YIG interface to be 10nm−2. The experimental quantification of these spin transport parameters is an important step towards the development of superconducting spintronic devices involving NbN thin films
    corecore