48 research outputs found
Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification
Convolutional Neural Networks (CNN) are state-of-the-art models for many
image classification tasks. However, to recognize cancer subtypes
automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images
(WSI) is currently computationally impossible. The differentiation of cancer
subtypes is based on cellular-level visual features observed on image patch
scale. Therefore, we argue that in this situation, training a patch-level
classifier on image patches will perform better than or similar to an
image-level classifier. The challenge becomes how to intelligently combine
patch-level classification results and model the fact that not all patches will
be discriminative. We propose to train a decision fusion model to aggregate
patch-level predictions given by patch-level CNNs, which to the best of our
knowledge has not been shown before. Furthermore, we formulate a novel
Expectation-Maximization (EM) based method that automatically locates
discriminative patches robustly by utilizing the spatial relationships of
patches. We apply our method to the classification of glioma and non-small-cell
lung carcinoma cases into subtypes. The classification accuracy of our method
is similar to the inter-observer agreement between pathologists. Although it is
impossible to train CNNs on WSIs, we experimentally demonstrate using a
comparable non-cancer dataset of smaller images that a patch-based CNN can
outperform an image-based CNN
An Application of a Service-oriented System to Support ArrayAnnotation in Custom Chip Design for Epigenomic Analysis
We present the implementation of an application using caGrid, which is the service-oriented Grid software infrastructure of the NCI cancer Biomedical Informatics Grid (caBIGTM), to support design and analysis of custom microarray experiments in the study of epigenetic alterations in cancer. The design and execution of these experiments requires synthesis of information from multiple data types and datasets. In our implementation, each data source is implemented as a caGrid Data Service, and analytical resources are wrapped as caGrid Analytical Services. This service-based implementation has several advantages. A backend resource can be modified or upgraded, without needing to change other components in the application. A remote resource can be added easily, since resources are not required to be collected in a centralized infrastructure
GridIMAGE: A Novel Use of Grid Computing to Support Interactive Human and Computer-Assisted Detection Decision Support
This paper describes a Grid-aware image reviewing system (GridIMAGE) that allows practitioners to (a) select images from multiple geographically distributed digital imaging and communication in medicine (DICOM) servers, (b) send those images to a specified group of human readers and computer-assisted detection (CAD) algorithms, and (c) obtain and compare interpretations from human readers and CAD algorithms. The currently implemented system was developed using the National Cancer Institute caGrid infrastructure and is designed to support the identification of lung nodules on thoracic computed tomography. However, the infrastructure is general and can support any type of distributed review. caGrid data and analytical services are used to link DICOM image databases and CAD systems and to interact with human readers. Moreover, the service-oriented and distributed structure of the GridIMAGE framework enables a flexible system, which can be deployed in an institution (linking multiple DICOM servers and CAD algorithms) and in a Grid environment (linking the resources of collaborating research groups). GridIMAGE provides a framework that allows practitioners to obtain interpretations from one or more human readers or CAD algorithms. It also provides a mechanism to allow cooperative imaging groups to systematically perform image interpretation tasks associated with research protocols
Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression
Tumor-infiltrating lymphocytes (TILs) have been established as a robust prognostic biomarker in breast cancer, with emerging utility in predicting treatment response in the adjuvant and neoadjuvant settings. In this study, the role of TILs in predicting overall survival and progression-free interval was evaluated in two independent cohorts of breast cancer from the Cancer Genome Atlas (TCGA BRCA) and the Carolina Breast Cancer Study (UNC CBCS). We utilized machine learning and computer vision algorithms to characterize TIL infiltrates in digital whole-slide images (WSIs) of breast cancer stained with hematoxylin and eosin (H&E). Multiple parameters were used to characterize the global abundance and spatial features of TIL infiltrates. Univariate and multivariate analyses show that large aggregates of peritumoral and intratumoral TILs (forests) were associated with longer survival, whereas the absence of intratumoral TILs (deserts) is associated with increased risk of recurrence. Patients with two or more high-risk spatial features were associated with significantly shorter progression-free interval (PFI). This study demonstrates the practical utility of Pathomics in evaluating the clinical significance of the abundance and spatial patterns of distribution of TIL infiltrates as important biomarkers in breast cancer