2 research outputs found

    Manipulating the 3D organization of the largest synthetic yeast chromosome

    Get PDF
    Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes. </p

    Biallelic and gene-wide genomic substitution for endogenous intron and retroelement mutagenesis in human cells

    No full text
    Functional annotation of the vast noncoding landscape of the diploid human genome still remains a major challenge of genomic research. Here the authors present a scarless, biallelic, and 100 kb-scale mutagenesis in human cells that uncovers functional significances of endogenous introns and retrotransposons in the chromatin context
    corecore