18 research outputs found

    Dual, orthogonal, backlit pinhole radiography in OMEGA experiments

    Full text link
    Backlit pinhole radiography used with ungated film as a detector creates x-ray radiographs with increased resolution and contrast. Current hydrodynamics experiments on the OMEGA Laser use a three-dimensional sinusoidal pattern as a seed perturbation for the study of instabilities. The structure of this perturbation makes it highly desirable to obtain two simultaneous orthogonal backlighting views. We accomplished this using two backlit pinholes each mounted 12 mm12mm from the target. The pinholes, of varying size and shape, were centered on 5 mm5mm square foils of 50 μm50μm thick Ta. The backlighting is by KK-alpha emission from a 500 μm500μm square Ti or Sc foil mounted 500 μm500μm from the Ta on a plastic substrate. Four laser beams overfill the metal foil, so that the expanding plastic provides radial tamping of the expanding metal plasma. The resulting x-rays pass through the target onto (ungated) direct exposure film (DEF). Interference between the two views is reduced by using a nose cone in front of the DEF, typically with a 9 mm9mm Ta aperture and with magnets to deflect electrons. Comparison of varying types of pinholes and film exposures will be presented from recent experiments as well as an analysis of the background noise created using this experimental technique.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87894/2/10E327_1.pd

    The effect of a short-wavelength mode on the evolution of a long-wavelength perturbation driven by a strong blast wave

    Full text link
    Shock-accelerated material interfaces are potentially unstable to both the Richtmyer–Meshkov and Rayleigh–Taylor (RT) instabilities. Shear that develops along with these instabilities in turn drives the Kelvin–Helmholtz instability. When driven by strong shocks, the evolution and interaction of these instabilities is further complicated by compressibility effects. This paper details a computational study of the formation of jets at strongly driven hydrodynamically unstable interfaces, and the interaction of these jets with one another and with developing spikes and bubbles. This provides a nonlinear spike-spike and spike-bubble interaction mechanism that can have a significant impact on the large-scale characteristics of the mixing layer. These interactions result in sensitivity to the initial perturbation spectrum, including the relative phases of the various modes, that persists long into the nonlinear phase of instability evolution. Implications for instability growth rates, the bubble merger process, and the degree of mix in the layer are described. Results from relevant deceleration RT experiments, performed on OMEGA [J. M. Soures et al., Phys. Plasmas 5, 2108 (1996)], are shown to demonstrate some of these effects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70501/2/PHPAEN-11-12-5507-1.pd

    Transition to turbulence and effect of initial conditions on three-dimensional compressible mixing in planar blast-wave-driven systems

    Full text link
    Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh–Taylor, Richtmyer–Meshkov, and decompression effects. In this paper, results from three-dimensional (3D) numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pretransition value and, in the case of the bubble front, relative to the 2D result. The post-transition spike front velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse supernovae are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87764/2/056317_1.pd

    Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface

    Get PDF
    Results are reported from the first experiments to explore the evolution of the Rayleigh–Taylor (RT) instability from intentionally three-dimensional (3D) initial conditions at an embedded, decelerating interface in a high-Reynolds-number flow. The experiments used ∼ 5 kJ∼5kJ of laser energy to produce a blast wave in polyimide and/or brominated plastic having an initial pressure of ∼ 50 Mbars.∼50Mbars. This blast wave shocked and then decelerated the perturbed interface between the first material and lower-density C foam. This caused the formation of a decelerating interface with an Atwood number ∼ 2/3,∼2/3, producing a long-term positive growth rate for the RT instability. The initial perturbations were a 3D perturbation in an “egg-crate” pattern with feature spacings of 71 μm in two orthogonal directions and peak-to-valley amplitudes of 5 μm. The resulting RT spikes appear to overtake the shock waves, moving at a large fraction of the predeceleration, “free-fall” velocity. This result was unanticipated by prior simulations and models. © 2004 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69657/2/PHPAEN-11-5-2829-1.pd

    Progress Toward the Study of Laboratory Scale, Astrophysically Relevant, Turbulent Plasmas

    Full text link
    Recent results from an ongoing series of Rayleigh-Taylor instability experiments being conducted on the Omega Laser are described. The goal of these experiments is to study, in a controlled laboratory setting, the mixing that occurs at an unstable interface subjected to an acceleration history similar to the explosion phase of a core-collapse supernova. In a supernova, the Reynolds number characterizing this mixing is extremely large (Re > 10 10 ) and is more than sufficient to produce a turbulent flow at the interface. In the laboratory experiment, by contrast, the spatial scales are much smaller, but are still sufficiently large (Re > 10 5 ) to support a turbulent flow and therefore recreate the conditions relevant to the supernova problem. The data from these experiments will be used to validate astrophysical codes as well as to better understand the transition to turbulence in such high energy density systems. The experimental results to date using two-dimensional initial perturbations demonstrate a clear visual transition from a well-ordered perturbation structure consisting of only a few modes to one with considerable modal content. Analysis of these results, however, indicates that while a turbulent spectrum visually appears to be forming, the layer has not yet reached the asymptotic growth rate characteristic of a fully turbulent layer. Recent advances in both target fabrication and diagnostic techniques are discussed as well. These advances will allow for the study of well-controlled 3D perturbations, increasing our ability to recreate the conditions occurring in the supernova.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42030/1/10509_2005_Article_3906.pd

    Blast-Wave-Driven, Multidimensional Rayleigh-Taylor Instability Experiments.

    Full text link
    This thesis discusses experiments well-scaled to the blast-wave-driven instabilities that are believed to occur during the explosion phase of SN1987A. Blast waves occur following a sudden, nite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He-H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic disk that is followed by a low-density foam cylinder. A blast wave structure similar to those in supernovae is created in the plastic layer. Several types of initial conditions that seed the hydrodynamic instabilities are presented in this thesis. These include 2D, 3D, single-mode and multimode sinusoidal patterns. These conditions produce unstable growth dominated by the Rayleigh-Taylor instability in the nonlinear regime. We have detected the interface structure under these conditions, using dual, orthogonal radiography. Thegrowth of the unstable layer is compared to incompressible mixing models. Recent advances in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the Rayleigh-Taylor spike and penetrating further than previously observed or predicted by current simulations. 3D, hydrodynamic simulations do not show this eect. I will also discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin.Ph.D.Applied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/63796/1/ckuranz_1.pd

    Preheat Issues in Hydrodynamic Hedla Experiments

    Full text link
    Hydrodynamic experiments have become a very active area within High Energy Density Laboratory Astrophysics. In such experiments, preheat of an interior surface due to heating prior to shock arrival can alter the initial conditions for further evolution and can change the nature of the experiment (Olson et al., 2003). Unfortunately, preheat cannot typically be detected without undertaking dedicated experiments for this purpose. We have designed such experiments, relevant to hydrodynamic instability experiments using Omega Laser at intensities of ~10 15 W/cm 2 . Simulations using the HYADES code suggest that radiative preheat alone causes the interface to move approximately 2 μm before the blast wave reaches it. Hot-electron preheat could cause much larger motions. These experiments will use VISAR to examine the motion of an aluminum sample layer at the rear interface of a standard hydrodynamic target during the period before the shock reaches it (Allen and Burton, 1993).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42057/1/10509_2005_Article_3945.pd
    corecore