66 research outputs found

    Facilitatory effect of insulin treatment on hepatocellular carcinoma development in diabetes

    Get PDF
    Background: To evaluate the effect of insulin treatment on the incidence and/or severity of hepatocellular carcinoma (HCC) in a mouse model of HCC based on diabetes. Methods: We recently reported that neonatal streptozotocin (STZ) treatment causes type 1 diabetes and subsequent HCC in ddY, Institute for Animal Reproduction (DIAR) mice. Newborn male DIAR mice were divided into three groups based on STZ and insulin (INS) treatment. STZ was subcutaneously injected (60 mg/g) into the STZ-treated group (DIAR-nSTZ mice, N = 13) and the STZ/insulin-treated group (DIAR-nSTZ/INS mice, N = 20). A physiologic solution was injected into the control group (DIAR-control mice, N = 8) 1.5 days after birth. Insulin was subcutaneously injected into the DIAR-nSTZ/INS mice according to the following protocol: 2 IU/day at 4–5 weeks of age, 3 IU/day at 5–7 weeks of age, and 4 IU/day at 7–12 weeks of age. All mice were fed a normal diet and were subjected to physiological and histopathological assessments at 12 weeks of age. Results: DIAR-nSTZ mice had significantly lower body weight and higher blood glucose levels than DIAR-control mice, whereas no significant differences were observed between DIAR-nSTZ/INS mice and control mice. At 12 weeks of age, lower weight of paratesticular fat and higher levels of total cholesterol, triglyceride, and free fatty acids were observed in DIAR-nSTZ mice compared to DIAR-control mice, whereas there were no significant differences between DIAR-nSTZ/INS mice and DIAR-control mice. In the livers of DIAR-nSTZ mice, HCC was observed in 15% of cases, and dysplastic nodules were observed in 77% of cases. In the livers of DIAR-nSTZ/INS mice, HCC was observed in 39% of cases and dysplastic nodules were observed in 61% of cases (p = 0.011). Moreover, the average tumor size was significantly larger in STZ/INS-treated mice than in STZ-treated mice. Immunohistochemical analysis demonstrated that the expression of ERK1/2, downstream substrates of insulin signaling that activate cell proliferation, was significantly higher in STZ/INS-treated mice compared to STZ-treated mice. Conclusions: Insulin treatment promoted, rather than inhibited, the progression of liver carcinogenesis in DIAR-nSTZ mice. Hyperinsulinemia rather than hyperglycemia can accelerate the progression of HCC via insulin signaling

    LXR agonist increases apoE secretion from HepG2 spheroid, together with an increased production of VLDL and apoE-rich large HDL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The physiological regulation of hepatic apoE gene has not been clarified, although the expression of apoE in adipocytes and macrophages has been known to be regulated by LXR.</p> <p>Methods and Results</p> <p>We investigated the effect of TO901317, a LXR agonist, on hepatic apoE production utilizing HepG2 cells cultured in spheroid form, known to be more differentiated than HepG2 cells in monolayer culture. Spheroid HepG2 cells were prepared in alginate-beads. The secretions of albumin, apoE and apoA-I from spheroid HepG2 cells were significantly increased compared to those from monolayer HepG2 cells, and these increases were accompanied by increased mRNA levels of apoE and apoA-I. Several nuclear receptors including LXRα also became abundant in nuclear fractions in spheroid HepG2 cells. Treatment with TO901317 significantly increased apoE protein secretion from spheroid HepG2 cells, which was also associated with the increased expression of apoE mRNA. Separation of the media with FPLC revealed that the production of apoE-rich large HDL particles were enhanced even at low concentration of TO901317, and at higher concentration of TO901317, production of VLDL particles increased as well.</p> <p>Conclusions</p> <p>LXR activation enhanced the expression of hepatic apoE, together with the alteration of lipoprotein particles produced from the differentiated hepatocyte-derived cells. HepG2 spheroids might serve as a good model of well-differentiated human hepatocytes for future investigations of hepatic lipid metabolism.</p

    Use of gas chromatography mass spectrometry to elucidate metabolites predicting the phenotypes of IgA nephropathy in hyper IgA mice.

    No full text
    IgA nephropathy, a common chronic kidney disease, has various possible outcomes. Therefore, the identification of novel prognostic biomarkers is needed. To this purpose, we used gas chromatography mass spectrometry to search for metabolites capable of predicting the phenotypes of IgA nephropathy in hyper IgA (HIGA) mice, an established model mice for IgA nephropathy. We measured the plasma metabolite levels in 12- and 22-week-old mice, prior to the manifestation of IgA nephropathy phenotypes, and statistically investigated the associations between these metabolites and the phenotypes of IgA nephropathy, such as the urine protein levels and histological phenotypes of the kidney at 32 weeks. We observed that in plasma samples collected from 12- and 22-week-old HIGA mice, the urinary protein levels were significantly associated with 8 and 10 metabolites, the glomerular cellular component levels were significantly associated with 8 and 7 metabolites, and the mesangial substrate levels were significantly associated with 8 and 8 metabolites, respectively. Among the candidate metabolites associated with the phenotypes of IgA nephropathy, coniferyl alcohol levels were significantly higher in HIGA mice at all of the 12, 22, and 32 weeks of age. Since this study was an observational study, we could not elucidate the underlying mechanisms; however, we were able to identify new candidate metabolites, such as coniferyl alcohol, as being potentially involved in the pathogenesis of IgA nephropathy. These results might help to develop novel laboratory tests and therapeutic reagents for IgA nephropathy in the future

    Apolipoprotein M bound sphingosine 1-phosphate suppresses NETosis through activating S1P1 and S1P4

    No full text
    The pleiotropic effects of high-density lipoprotein (HDL), including its protective properties against sepsis, are attributed to the sphingosine 1-phosphate and apolipoprotein M (ApoM) that are carried on the lipoproteins. In this study, we attempted to elucidate the possible mechanisms underlying the sepsis coagulopathic state by considering the modulation of NETosis. Our results revealed that in a lipopolysaccharide-induced sepsis mouse model, the levels of NETosis markers, such as plasma DNA and histone, were elevated in ApoM-knockout (KO) mice and attenuated in ApoM-overexpressing mice. In ApoM-KO mice, the survival rate decreased and the occurrence rates of coagulopathy and organ injury increased following the administration of histone. Treatment with a conditioned medium of ApoM-overexpressing cells attenuated the observed NETosis in HL-60S cells that differentiated into neutrophils and were inhibited through the suppression of S1P1 or S1P4. The attenuation of PKCδ and PKCα/β by S1P1 and S1P4 activation may also be involved. In ApoM-overexpressing mice, coagulopathy and organ injuries were attenuated following an injection of histone; these effects were partially inhibited by S1P1, 3, S1P4, or S1P1 antagonists. Furthermore, the exogenous administration of ApoM protected ApoM-KO mice that were challenged with histone from developing NETosis. In conclusion, the ApoM/S1P axis protects against NETosis through the attenuation of PKC activation by S1P1 and S1P4. The development of drugs targeting the ApoM/S1P axis may be beneficial for the treatment of pathological conditions involving uncontrolled NETosis, such as sepsis

    Role of Autotaxin in High Glucose-Induced Human ARPE-19 Cells

    No full text
    Autotaxin (ATX) is an enzymatic with lysophospholipase D (lysoPLD) activity. We investigated the role of ATX in high glucose (HG)-induced human retinal pigment epithelial (ARPE-19) cells to explore the pathogenesis of diabetic retinopathy (DR). We performed a quantitative real-time polymerase chain reaction, Western blotting, immunocytochemistry, enzyme-linked immunosorbent assay, cell permeability assay, and transepithelial electrical resistance measurement in HG-induced ARPE-19 cells and compared their results with those of normal glucose and osmotic pressure controls. ATX expression and its lysoPLD activity, barrier function, and expression of vascular endothelial growth factor receptors VEGFR-1 and VEGFR-2 were downregulated, while fibrotic responses, cytoskeletal reorganization, and transforming growth factor-&beta; expression were upregulated, in the HG group. Our results suggest that HG induces intracellular ATX downregulation, barrier dysfunction, and fibrosis, which are involved in early DR and can be targeted for DR treatment

    Fibrotic Response of Human Trabecular Meshwork Cells to Transforming Growth Factor-Beta 3 and Autotaxin in Aqueous Humor

    No full text
    This study examines the potential role of transforming growth factor-beta 3 (TGF-&beta;3) on the fibrotic response of cultured human trabecular meshwork (HTM) cells. The relationships and trans-signaling interactions between TGF-&beta;3 and autotaxin (ATX) in HTM cells were also examined. The levels of TGF-&beta; and ATX in the aqueous humor (AH) of patients were measured by an immunoenzymetric assay. The TGF-&beta;3-induced expression of the fibrogenic markers, fibronectin, collagen type I alpha 1 chain, and alpha-smooth muscle actin, and ATX were examined by quantitative real-time PCR, Western blotting, and immunocytochemistry, and the trans-signaling regulatory effect of TGF-&beta;3 on ATX expression was also evaluated. In HTM cells, the significant upregulation of ATX was induced by TGF-&beta;3 at a concentration of 0.1 ng/mL, corresponding to the physiological concentration in the AH of patients with exfoliative glaucoma (XFG). However, higher concentrations of TGF-&beta;3 significantly suppressed ATX expression. TGF-&beta;3 regulated ATX transcription and signaling in HTM cells, inducing the upregulation of fibrogenic proteins in a dose-dependent manner. Trans-signaling of TGF-&beta;3 regulated ATX transcription, protein expression, and signaling, and was thereby suggested to induce fibrosis of the trabecular meshwork. Modulation of trans-signaling between TGF-&beta;3 and ATX may be key to elucidate the pathology of XFG, and for the development of novel treatment modalities
    • …
    corecore