126 research outputs found
Finding undetected protein associations in cell signaling by belief propagation
External information propagates in the cell mainly through signaling cascades
and transcriptional activation, allowing it to react to a wide spectrum of
environmental changes. High throughput experiments identify numerous molecular
components of such cascades that may, however, interact through unknown
partners. Some of them may be detected using data coming from the integration
of a protein-protein interaction network and mRNA expression profiles. This
inference problem can be mapped onto the problem of finding appropriate optimal
connected subgraphs of a network defined by these datasets. The optimization
procedure turns out to be computationally intractable in general. Here we
present a new distributed algorithm for this task, inspired from statistical
physics, and apply this scheme to alpha factor and drug perturbations data in
yeast. We identify the role of the COS8 protein, a member of a gene family of
previously unknown function, and validate the results by genetic experiments.
The algorithm we present is specially suited for very large datasets, can run
in parallel, and can be adapted to other problems in systems biology. On
renowned benchmarks it outperforms other algorithms in the field.Comment: 6 pages, 3 figures, 1 table, Supporting Informatio
Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module
A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein
Infection-Associated Nuclear Degeneration in the Rice Blast Fungus Magnaporthe oryzae Requires Non-Selective Macro-Autophagy
addresses: School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom.notes: PMCID: PMC3308974Freely-available open access article.The rice blast fungus Magnaporthe oryzae elaborates a specialized infection structure called an appressorium to breach the rice leaf surface and gain access to plant tissue. Appressorium development is controlled by cell cycle progression, and a single round of nuclear division occurs prior to appressorium formation. Mitosis is always followed by programmed cell death of the spore from which the appressorium develops. Nuclear degeneration in the spore is known to be essential for plant infection, but the precise mechanism by which it occurs is not known
Gene Expression Rhythms in the Mussel Mytilus galloprovincialis (Lam.) across an Annual Cycle
Seasonal environmental changes may affect the physiology of Mytilus
galloprovincialis (Lam.), an intertidal filter-feeder bivalve
occurring commonly in Mediterranean and Atlantic coastal areas. We investigated
seasonal variations in relative transcript abundance of the digestive gland and
the mantle (gonads) of males and females. To identify gene expression trends
– in terms of relative mRNA abundance- we used a medium-density cDNA
microarray (1.7 K probes) in dual-color competitive hybridization analyses.
Hierarchical clustering of digestive gland microarray data showed two main
branches, distinguishing profiles associated with the “hot” months
(May–August) from the other months. Genes involved in chitin metabolism,
associated with mussel nutrition and digestion showed higher mRNA levels during
summer. Moreover, we found different gene transcriptomic patterns in the
digestive glands of males when compared to females, during the four stages of
mussel gonadal development. Microarray data from gonadal transcripts also
displayed clear patterns during the different developmental phases respect to
the resting period (stage I) with peak relative mRNA abundance at the ripe phase
(stage III) for both sexes. These data showed a clear temporal pattern in
transcriptomic profiles of mussels sampled over an annual cycle. Physiological
response to thermal variation, food availability, and reproductive status across
months may contribute to variation in relative mRNA abundance
A Screen for Spore Wall Permeability Mutants Identifies a Secreted Protease Required for Proper Spore Wall Assembly
The ascospores of Saccharomyces cerevisiae are surrounded by a complex wall that protects the spores from environmental stresses. The outermost layer of the spore wall is composed of a polymer that contains the cross-linked amino acid dityrosine. This dityrosine layer is important for stress resistance of the spore. This work reports that the dityrosine layer acts as a barrier blocking the diffusion of soluble proteins out of the spore wall into the cytoplasm of the ascus. Diffusion of a fluorescent protein out of the spore wall was used as an assay to screen for mutants affecting spore wall permeability. One of the genes identified in this screen, OSW3 (RRT12/YCR045c), encodes a subtilisin-family protease localized to the spore wall. Mutation of the active site serine of Osw3 results in spores with permeable walls, indicating that the catalytic activity of Osw3 is necessary for proper construction of the dityrosine layer. These results indicate that dityrosine promotes stress resistance by acting as a protective shell around the spore. OSW3 and other OSW genes identified in this screen are strong candidates to encode enzymes involved in assembly of this protective dityrosine coat
A Phenotypic Profile of the Candida albicans Regulatory Network
Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but not its overall output
Fungal chitinases: diversity, mechanistic properties and biotechnological potential
Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review
Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast
Isabel A. Calvo et al...Background
An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways.
Methodology/Principal Findings
We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner.
Conclusions/Significance
With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.This work was supported by Direccion General de Investigacion of Spain Grant BFU2006-02610, and by the Spanish program Consolider-Ingenio 2010 Grant CSD 2007-0020, to E.H.Peer reviewe
- …