1,728 research outputs found

    Chimeras in networks of planar oscillators

    Full text link
    Chimera states occur in networks of coupled oscillators, and are characterized by having some fraction of the oscillators perfectly synchronized, while the remainder are desynchronized. Most chimera states have been observed in networks of phase oscillators with coupling via a sinusoidal function of phase differences, and it is only for such networks that any analysis has been performed. Here we present the first analysis of chimera states in a network of planar oscillators, each of which is described by both an amplitude and a phase. We find that as the attractivity of the underlying periodic orbit is reduced chimeras are destroyed in saddle-node bifurcations, and supercritical Hopf and homoclinic bifurcations of chimeras also occur.Comment: To appear, Phys. Rev.

    Chimera states in heterogeneous networks

    Full text link
    Chimera states in networks of coupled oscillators occur when some fraction of the oscillators synchronise with one another, while the remaining oscillators are incoherent. Several groups have studied chimerae in networks of identical oscillators, but here we study these states in a heterogeneous model for which the natural frequencies of the oscillators are chosen from a distribution. We obtain exact results by reduction to a finite set of differential equations. We find that heterogeneity can destroy chimerae, destroy all states except chimerae, or destabilise chimerae in Hopf bifurcations, depending on the form of the heterogeneity.Comment: Revised text. To appear, Chao

    Synchronizability determined by coupling strengths and topology on Complex Networks

    Full text link
    We investigate in depth the synchronization of coupled oscillators on top of complex networks with different degrees of heterogeneity within the context of the Kuramoto model. In a previous paper [Phys. Rev. Lett. 98, 034101 (2007)], we unveiled how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks. Here, we provide more evidence on this phenomenon extending the previous work to networks that interpolate between homogeneous and heterogeneous topologies. We also present new details on the path towards synchronization for the evolution of clustering in the synchronized patterns. Finally, we investigate the synchronization of networks with modular structure and conclude that, in these cases, local synchronization is first attained at the most internal level of organization of modules, progressively evolving to the outer levels as the coupling constant is increased. The present work introduces new parameters that are proved to be useful for the characterization of synchronization phenomena in complex networks.Comment: 11 pages, 10 figures and 1 table. APS forma

    Self-Consistent Perturbation Theory for Thermodynamics of Magnetic Impurity Systems

    Full text link
    Integral equations for thermodynamic quantities are derived in the framework of the non-crossing approximation (NCA). Entropy and specific heat of 4f contribution are calculated without numerical differentiations of thermodynamic potential. The formulation is applied to systems such as PrFe4P12 with singlet-triplet crystalline electric field (CEF) levels.Comment: 3 pages, 2 figures, proc. ASR-WYP-2005 (JAERI

    Collective synchronization in spatially extended systems of coupled oscillators with random frequencies

    Full text link
    We study collective behavior of locally coupled limit-cycle oscillators with random intrinsic frequencies, spatially extended over dd-dimensional hypercubic lattices. Phase synchronization as well as frequency entrainment are explored analytically in the linear (strong-coupling) regime and numerically in the nonlinear (weak-coupling) regime. Our analysis shows that the oscillator phases are always desynchronized up to d=4d=4, which implies the lower critical dimension dlP=4d_{l}^{P}=4 for phase synchronization. On the other hand, the oscillators behave collectively in frequency (phase velocity) even in three dimensions (d=3d=3), indicating that the lower critical dimension for frequency entrainment is dlF=2d_{l}^{F}=2. Nonlinear effects due to periodic nature of limit-cycle oscillators are found to become significant in the weak-coupling regime: So-called {\em runaway oscillators} destroy the synchronized (ordered) phase and there emerges a fully random (disordered) phase. Critical behavior near the synchronization transition into the fully random phase is unveiled via numerical investigation. Collective behavior of globally-coupled oscillators is also examined and compared with that of locally coupled oscillators.Comment: 18 pages, 18 figure

    Dynamics of the Singlet-Triplet System Coupled with Conduction Spins -- Application to Pr Skutterudites

    Full text link
    Dynamics of the singlet-triplet crystalline electric field (CEF) system at finite temperatures is discussed by use of the non-crossing approximation. Even though the Kondo temperature is smaller than excitation energy to the CEF triplet, the Kondo effect appears at temperatures higher than the CEF splitting, and accordingly only quasi-elastic peak is found in the magnetic spectra. On the other hand, at lower temperatures the CEF splitting suppresses the Kondo effect and inelastic peak develops. The broad quasi-elastic neutron scattering spectra observed in PrFe_4P_{12} at temperatures higher than the quadrupole order correspond to the parameter range where the CEF splittings are unimportant.Comment: 16 pages, 12 figures, 1 tabl

    Chimera order in spin systems

    Full text link
    Homogeneous populations of oscillators have recently been shown to exhibit stable coexistence of coherent and incoherent regions. Generalizing the concept of chimera states to the context of order-disorder transition in systems at thermal equilibrium, we show analytically that such complex ordering can appear in a system of Ising spins, possibly the simplest physical system exhibiting this phenomenon. We also show numerically the existence of chimera ordering in 3-dimensional spin systems that model layered magnetic materials, suggesting possible means of experimentally observing such states.Comment: 5 pages, 3 figure

    Coarse-graining the dynamics of coupled oscillators

    Full text link
    We present an equation-free computational approach to the study of the coarse-grained dynamics of {\it finite} assemblies of {\it non-identical} coupled oscillators at and near full synchronization. We use coarse-grained observables which account for the (rapidly developing) correlations between phase angles and oscillator natural frequencies. Exploiting short bursts of appropriately initialized detailed simulations, we circumvent the derivation of closures for the long-term dynamics of the assembly statistics.Comment: accepted for publication in Phys. Rev. Let

    Finite-size scaling of synchronized oscillation on complex networks

    Full text link
    The onset of synchronization in a system of random frequency oscillators coupled through a random network is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks with the degree distribution P(k)∼k−γP(k)\sim k^{-\gamma} at large kk, we found that the finite size exponent νˉ\bar{\nu} takes on the value 5/2 when γ>5\gamma>5, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3<γ<53<\gamma <5), νˉ\bar{\nu} and the order parameter exponent β\beta depend on γ\gamma. The analytic expressions for these exponents obtained from the mean field theory are shown to be in excellent agreement with data from extensive numerical simulations.Comment: 7 page

    Weakly versus highly nonlinear dynamics in 1D systems

    Full text link
    We analyze the morphological transition of a one-dimensional system described by a scalar field, where a flat state looses its stability. This scalar field may for example account for the position of a crystal growth front, an order parameter, or a concentration profile. We show that two types of dynamics occur around the transition: weakly nonlinear dynamics, or highly nonlinear dynamics. The conditions under which highly nonlinear evolution equations appear are determined, and their generic form is derived. Finally, examples are discussed.Comment: to be published in Europhys. Let
    • …
    corecore