52 research outputs found
Ice Core Records of Antarctic Warming Events in the Last Glacial Period
第3回極域科学シンポジウム 横断セッション「海・陸・氷床から探る後期新生代の南極寒冷圏環境変動」11月26日(月) 国立国語研究所 2階講
Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image
The potential of UV-induced fluorescence imaging was investigated as a non-destructive tool to monitor postharvest quality degradation of tomatoes harvested at the red stage and stored at 25 °C. The fluorescence images (excitation at 365 nm) were found to be a better indicator of tomato quality degradation than color images after color saturation. Tomatoes were stored at 25 °C for 9 d. The changes in color and fluorescence of tomato were evaluated by two types of images: Color and fluorescence images. A conventional colorimeter was also used for as a reference. Changes in the RGB ratio for these two types of images were opposite. In the color images, the G ratio decreased rapidly for the initial 3 or 5 d and then stabilized afterwards. On the other hand, in the fluorescence images, the G ratio increased continuously up to 9 d. Given that temperature conditions during transportation and storage of tomatoes is not always ideal, the results from this research provide the foundation for developing a postharvest monitoring system of mature tomato quality degradation
Down-regulation of hepatic AMP-activated protein kinase and up-regulation of CREB coactivator CRTC2 for gluconeogenesis under calorie-restricted conditions at a young age
AMP-activated protein kinase (AMPK) is a key molecule that controls energy homeostasis at cellular and whole body levels. Calorie restriction (CR) may exhibit the anti-aging effect through modulation of AMPK activity. We investigated the hepatic AMPK pathways for gluconeogenesis (the transducer of regulated cyclic adenosine monophosphate response element-binding protein (CREB) 2; CRTC2) and cell growth (mammalian target of rapamycin, mTOR). Male F344 rats at 2.5 months (mo) and 18 mo of age were subjected to 4-mo-long 30% CR; control rats were fed ad libitum (AL) throughout the experiment. Rats were killed 15 min after saline or glucose injection to evaluate activation of signal molecules under transient hyperglycemic and subsequent hyperinsulinemic conditions. Western blot analyses demonstrated a modest reduction of threonine-172-phosphorylated (p)-AMPKα levels and an increment of nuclear CRTC2 in the young CR group as compared with the agematched AL group. We also confirmed the increased binding of CRTC2 and CREB and up-regulation of gluconeogenic genes (PGC-1α and PEPCK) in the CR group. However, there was no CR-specific alteration in total or phosphorylated mTOR levels. The results suggest down-regulation of hepatic AMPK activity by CR for metabolic adaptation that promotes gluconeogenesis. The effect of CR on mTOR remains elusive
Development, validation, and comparison of gene analysis methods for detecting EGFR mutation from non-small cell lung cancer patients-derived circulating free DNA
The feasibility and required sensitivity of circulating free DNA (cfDNA)-based detection methods in second-line epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment are not well elucidated. We examined T790M and other activating mutations of EGFR by cfDNA to assess the clinical usability. In 45 non-small cell lung cancer (NSCLC) patients harboring activating EGFR mutations, cfDNAs were prepared from the plasma samples. EGFR mutations in cfDNA were detected using highly sensitive methods and originally developed assays and these results were compared to tissue-based definitive diagnoses. The specificity of each cfDNA-based method ranged 96–100% whereas the sensitivity ranged 56–67%, indicating its low pseudo-positive rate. In EGFR-TKI failure cohort, 41–46% samples were positive for T790M by each cfDNA-based method, which was comparable to re-biopsy tissue-based T790M positive rates in literature. The concordance of the results for each EGFR mutation ranged from 83–95%. In eight patients, the results of the cfDNA-based assays and re-biopsy-derived tissue-based test were compared. The observed overall agreement ranged in 50–63% in T790M, and in 63–100% in activating EGFR mutations. In this study, we have newly developed three types of assay which have enough sensitivity to detect cfDNA. We also detected T790M in 44% of patients who failed prior EGFR-TKI treatment, indicating that cfDNA-based assay has clinical relevance for detecting acquired mutations of EGFR
Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab
Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy
Thymidine Catabolism as a Metabolic Strategy for Cancer Survival
Thymidine phosphorylase (TP), a rate-limiting enzyme in thymidine catabolism, plays a pivotal role in tumor progression; however, the mechanisms underlying this role are not fully understood. Here, we found that TP-mediated thymidine catabolism could supply the carbon source in the glycolytic pathway and thus contribute to cell survival under conditions of nutrient deprivation. In TP-expressing cells, thymidine was converted to metabolites, including glucose 6-phosphate, lactate, 5-phospho-α-D-ribose 1-diphosphate, and serine, via the glycolytic pathway both in vitro and in vivo. These thymidine-derived metabolites were required for the survival of cells under low-glucose conditions. Furthermore, activation of thymidine catabolism was observed in human gastric cancer. These findings demonstrate that thymidine can serve as a glycolytic pathway substrate in human cancer cells
Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells
Thymidine phosphorylase (TP) is a rate-limiting enzyme in the thymidine catabolic pathway. TP is identical to platelet-derived endothelial cell growth factor and contributes to tumour angiogenesis. TP induces the generation of reactive oxygen species (ROS) and enhances the expression of oxidative stress-responsive genes, such as interleukin (IL)-8. However, the mechanism underlying ROS induction by TP remains unclear. In the present study, we demonstrated that TP promotes NADPH oxidase-derived ROS signalling in cancer cells. NADPH oxidase inhibition using apocynin or small interfering RNAs (siRNAs) abrogated the induction of IL-8 and ROS in TP-expressing cancer cells. Meanwhile, thymidine catabolism induced by TP increased the levels of NADPH and intermediates of the pentose phosphate pathway (PPP). Both siRNA knockdown of glucose 6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme in PPP, and a G6PD inhibitor, dihydroepiandrosterone, reduced TP-induced ROS production. siRNA downregulation of 2-deoxy-D-ribose 5-phosphate (DR5P) aldolase, which is needed for DR5P to enter glycolysis, also suppressed the induction of NADPH and IL-8 in TP-expressing cells. These results suggested that TP-mediated thymidine catabolism increases the intracellular NADPH level via the PPP, which enhances the production of ROS by NADPH oxidase and activates its downstream signalling
- …