398 research outputs found
Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition
Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species
Effectiveness of adalimumab for rheumatoid arthritis in patients with a history of TNF-antagonist therapy in clinical practice
Objective. To evaluate the effectiveness and safety of adalimumab in patients with rheumatoid arthritis (RA) who previously discontinued tumour necrosis factor (TNF) antagonists for any reason in clinical practice. Methods. ReAct (Research in Active Rheumatoid Arthritis) was a large, open-label trial that enrolled adults with active RA who had previously been treated with traditional disease-modifying anti-rheumatic drugs or biological response modifiers. Patients selfadministered adalimumab 40 mg subcutaneously every other week for 12 weeks and were allowed to enter an optional long-term extension phase. Measures of adalimumab effectiveness included American College of Rheumatology (ACR) and European League Against Rheumatism (EULAR) response criteria, Disease Activity Score 28 (DAS28) and the Health Assessment Questionnaire Disability Index (HAQ DI). Results. Of 6610 patients, 899 had a history of etanercept and/or infliximab therapy; these patients experienced substantial clinical benefit from adalimumab treatment. At week 12, 60% of patients had an ACR20 and 33% had an ACR50 response; 76% had a moderate and 23% had a good EULAR response. In addition, 12% achieved a DAS28 < 2.6, indicating clinical remission, and 13% achieved a HAQ DI score < 0.5. The allergic adverse event rate, regardless of relationship to adalimumab, was 6.5/100-patient-years (PYs) in previously TNF antagonist-exposed patients and 4.3/100-PYs in TNF antagonist naive patients. A multiple regression analysis indicated no statistically significantly increased risk of serious infections in patients who received prior TNF antagonists compared with TNF antagonist naive patients. Conclusion. In typical clinical practice, adalimumab was effective and well-tolerated in patients with RA previously treated with etanercept and/or infliximab
Effect of Flow on Caloric Curve for Finite Nuclei
In a finite temperature Thomas-Fermi theory, we construct caloric curves for
finite nuclei enclosed in a freeze-out volume few times the normal nuclear
volume, with and without inclusion of flow. Without flow, the caloric curve
indicates a smooth liquid-gas phase transition whereas with flow, the
transition may be very sharp. We discuss these results in the context of two
recent experiments, one for heavy symmetric system (Au + Au at 600A MeV) and
the other for highly asymmetric system (Au + C at 1A GeV) where different
behaviours in the caloric curves are seen.Comment: 11 pages revtex; 4 figs; version to appear in Phys. Rev. Let
Setting the photoelectron clock through molecular alignment
The interaction of strong laser fields with matter intrinsically provides a powerful tool for imaging transient dynamics with an extremely high spatiotemporal resolution. Here, we study strong-field ionisation of laser-aligned molecules, and show a full real-time picture of the photoelectron dynamics in the combined action of the laser field and the molecular interaction. We demonstrate that the molecule has a dramatic impact on the overall strong-field dynamics: it sets the clock for the emission of electrons with a given rescattering kinetic energy. This result represents a benchmark for the seminal statements of molecular-frame strong-field physics and has strong impact on the interpretation of self-diffraction experiments. Furthermore, the resulting encoding of the time-energy relation in molecular-frame photoelectron momentum distributions shows the way of probing the molecular potential in real-time, and accessing a deeper understanding of electron transport during strong-field interactions
Continuous Equilibrium in Affine and Information-Based Capital Asset Pricing Models
We consider a class of generalized capital asset pricing models in continuous
time with a finite number of agents and tradable securities. The securities may
not be sufficient to span all sources of uncertainty. If the agents have
exponential utility functions and the individual endowments are spanned by the
securities, an equilibrium exists and the agents' optimal trading strategies
are constant. Affine processes, and the theory of information-based asset
pricing are used to model the endogenous asset price dynamics and the terminal
payoff. The derived semi-explicit pricing formulae are applied to numerically
analyze the impact of the agents' risk aversion on the implied volatility of
simultaneously-traded European-style options.Comment: 24 pages, 4 figure
The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing
Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides
Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity.
Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall.
Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
Chicago, IL, June 27 - July 3, 200
Measurement of the J/Psi Production Cross Section in 920 GeV/c Fixed-Target Proton-Nucleus Interactions
The mid-rapidity (dsigma_(pN)/dy at y=0) and total sigma_(pN) production
cross sections of J/Psi mesons are measured in proton-nucleus interactions.
Data collected by the HERA-B experiment in interactions of 920 GeV/c protons
with carbon, titanium and tungsten targets are used for this analysis. The
J/Psi mesons are reconstructed by their decay into lepton pairs. The total
production cross section obtained is sigma_(pN)(J/Psi) = 663 +- 74 +- 46
nb/nucleon. In addition, our result is compared with previous measurements
- …