2 research outputs found

    All-optically untangling light propagation through multimode fibres

    Full text link
    When light propagates through a complex medium, such as a multimode optical fibre (MMF), the spatial information it carries is scrambled. In this work we experimentally demonstrate an all-optical strategy to unscramble this light again. We first create a digital model capturing the way light has been scattered, and then use this model to inverse-design and build a complementary optical system - which we call an optical inverter - that reverses this scattering process. Our implementation of this concept is based on multi-plane light conversion, and can also be understood as a diffractive artificial neural network or a physical matrix pre-conditioner. We present three design strategies allowing different aspects of device performance to be prioritised. We experimentally demonstrate a prototype optical inverter capable of simultaneously unscrambling up to 30 spatial modes that have propagated through a 1m long MMF, and show how this enables near instantaneous incoherent imaging, without the need for any beam scanning or computational processing. We also demonstrate the reconfigurable nature of this prototype, allowing it to adapt and deliver a new optical transformation if the MMF it is matched to changes configuration. Our work represents a first step towards a new way to see through scattering media. Beyond imaging, this concept may also have applications to the fields of optical communications, optical computing and quantum photonics.Comment: 18 pages, 11 figure

    High-dimensional spatial mode sorting and optical circuit design using multi-plane light conversion

    Full text link
    Multi-plane light converters (MPLCs) are an emerging class of optical device capable of converting a set of input spatial light modes to a new target set of output modes. This operation represents a linear optical transformation - a much sought after capability in photonics. MPLCs have potential applications in both the classical and quantum optics domains, in fields ranging from optical communications, to optical computing and imaging. They consist of a series of diffractive optical elements (the 'planes'), typically separated by free-space. The phase delays imparted by each plane are determined by the process of inverse-design, most often using an adjoint algorithm known as the wavefront matching method (WMM), which optimises the correlation between the target and actual MPLC outputs. In this work we investigate high mode capacity MPLCs to create arbitrary spatial mode sorters and linear optical circuits. We focus on designs possessing low numbers of phase planes to render these MPLCs experimentally feasible. To best control light in this scenario, we develop a new inverse-design algorithm, based on gradient ascent with a specifically tailored objective function, and show how in the low-plane limit it converges to MPLC designs with substantially lower modal cross-talk and higher fidelity than achievable using the WMM. We experimentally demonstrate several prototype few-plane high-dimensional spatial mode sorters, operating on up to 55 modes, capable of sorting photons based on their Zernike mode, orbital angular momentum state, or an arbitrarily randomized spatial mode basis. We discuss the advantages and drawbacks of these proof-of-principle prototypes, and describe future improvements. Our work points to a bright future for high-dimensional MPLC-based technologies
    corecore