8 research outputs found

    Development of a DNA-Liposome Complex for Gene Delivery Applications

    Get PDF
    The association structures formed by cationic liposomes and DNA(Deoxyribonucleic acid)-liposome have been effectively utilized as gene carriers in transfection assays. In this research study, cationic liposomes were prepared using a modified lipid film hydration method consisting of a lyophilization step for gene delivery applications. The obtained results demonstrated that the mean particle size had no significant change while the polydispersity (PDI) increased after lyophilization. The mean particle size slightly reduced after lyophilization (520 ± 12 nm to 464 ± 25 nm) while the PDI increased after lyophilization (0.094 ± 0.017 to 0.220 ± 0.004). In addition. The mean particle size of vesicles increases when DNA is incorporated to the liposomes (673 ± 27 nm). According to the Scanning Electron Microscopy(SEM) and transmission electron microscopy (TEM) images, the spherical shape of liposomes confirmed their successful preservation and reconstitution from the powder. It was found that liposomal formulation has enhanced transfection considerably compared to the naked DNA as negative control. Finally, liposomal formulation in this research had a better function than LipofectamineŸ 2000 as a commercialized product because the cellular activity (cellular protein) was higher in the prepared lipoplex than LipofectamineŸ 2000

    Molecular packing of non-fullerene acceptors for organic solar cells: Distinctive local morphology in Y6 vs. ITIC derivatives

    No full text
    Since a couple of years ago, Y6 has emerged as one of the main non-fullerene acceptors for organic solar cells, as its use leads to superior power conversion efficiencies. It is thus of major interest to investigate the multiscale phenomena that are responsible for Y6's efficacy. Here, we modeled neat films of Y6 and earlier non-fullerene acceptors, IT-4F and ITIC, using a combination of density functional theory calculations and molecular dynamics simulations, to investigate the various factors that control their charge and exciton transport rates. We find that the molecular packing in Y6 is drastically different from that in IT-4F and ITIC. At the nanoscale, the local morphology of Y6 consists of a large number of directional face-on stackings and well-connected transport networks. Y6 also consistently shows higher electronic couplings for LUMOs, HOMOs, and local excitations than ITIC-type acceptors, which results in fast transport rates for electrons, holes, and excitons. Importantly, when considering dimers, their configurations in Y6 are more diverse than in ITIC-type acceptors, with many of those similar to the configurations observed in the Y6 crystal structure reported recently. Most Y6 dimer configurations exhibit strong binding interactions, large electronic couplings, and high transport rates, which when taken together rationalize the better performance of OSCs based on Y6. © 2021 The AuthorsOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore