9,408 research outputs found

    Robust And Optimal Opportunistic Scheduling For Downlink 2-Flow Network Coding With Varying Channel Quality and Rate Adaptation

    Get PDF
    This paper considers the downlink traffic from a base station to two different clients. When assuming infinite backlog, it is known that inter-session network coding (INC) can significantly increase the throughput of each flow. However, the corresponding scheduling solution (when assuming dynamic arrivals instead and requiring bounded delay) is still nascent. For the 2-flow downlink scenario, we propose the first opportunistic INC + scheduling solution that is provably optimal for time-varying channels, i.e., the corresponding stability region matches the optimal Shannon capacity. Specifically, we first introduce a new binary INC operation, which is distinctly different from the traditional wisdom of XORing two overheard packets. We then develop a queue-length-based scheduling scheme, which, with the help of the new INC operation, can robustly and optimally adapt to time-varying channel quality. We then show that the proposed algorithm can be easily extended for rate adaptation and it again robustly achieves the optimal throughput. A byproduct of our results is a scheduling scheme for stochastic processing networks (SPNs) with random departure, which relaxes the assumption of deterministic departure in the existing results. The new SPN scheduler could thus further broaden the applications of SPN scheduling to other real-world scenarios

    Finding Related Publications: Extending the Set of Terms Used to Assess Article Similarity.

    Get PDF
    Recommendation of related articles is an important feature of the PubMed. The PubMed Related Citations (PRC) algorithm is the engine that enables this feature, and it leverages information on 22 million citations. We analyzed the performance of the PRC algorithm on 4584 annotated articles from the 2005 Text REtrieval Conference (TREC) Genomics Track data. Our analysis indicated that the PRC highest weighted term was not always consistent with the critical term that was most directly related to the topic of the article. We implemented term expansion and found that it was a promising and easy-to-implement approach to improve the performance of the PRC algorithm for the TREC 2005 Genomics data and for the TREC 2014 Clinical Decision Support Track data. For term expansion, we trained a Skip-gram model using the Word2Vec package. This extended PRC algorithm resulted in higher average precision for a large subset of articles. A combination of both algorithms may lead to improved performance in related article recommendations

    GENHOP: An Image Generation Method Based on Successive Subspace Learning

    Full text link
    Being different from deep-learning-based (DL-based) image generation methods, a new image generative model built upon successive subspace learning principle is proposed and named GenHop (an acronym of Generative PixelHop) in this work. GenHop consists of three modules: 1) high-to-low dimension reduction, 2) seed image generation, and 3) low-to-high dimension expansion. In the first module, it builds a sequence of high-to-low dimensional subspaces through a sequence of whitening processes, each of which contains samples of joint-spatial-spectral representation. In the second module, it generates samples in the lowest dimensional subspace. In the third module, it finds a proper high-dimensional sample for a seed image by adding details back via locally linear embedding (LLE) and a sequence of coloring processes. Experiments show that GenHop can generate visually pleasant images whose FID scores are comparable or even better than those of DL-based generative models for MNIST, Fashion-MNIST and CelebA datasets.Comment: 10 pages, 5 figures, accepted by ISCAS 202

    High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator

    Get PDF
    Abstract—Pentacene-based organic thin-film transistors (OTFTs) with solution-processed barium titanate (Ba1.2Ti0.8O3) as a gate insulator are demonstrated. The electrical properties of pentacene-based TFTs show a high field-effect mobility of 8.85 cm2 · V−1 · s−1, a low threshold voltage of −1.89 V, and a low subthreshold slope swing of 310 mV/decade. The chemical composition and binding energy of solution-processed barium titanate thin films are analyzed through X-ray photoelectron spectroscopy. The matching surface energy on the surface of the barium titanate thin film is 43.12 mJ · m−2, which leads to Stranski–Krastanov mode growth, and thus, high mobility is exhibited in pentacene-based TFTs. Index Terms—Barium titanate, high field-effect mobility, high permittivity, organic thin-filmtransistor (OTFT), solution process

    An Overview on Language Models: Recent Developments and Outlook

    Full text link
    Language modeling studies the probability distributions over strings of texts. It is one of the most fundamental tasks in natural language processing (NLP). It has been widely used in text generation, speech recognition, machine translation, etc. Conventional language models (CLMs) aim to predict the probability of linguistic sequences in a causal manner. In contrast, pre-trained language models (PLMs) cover broader concepts and can be used in both causal sequential modeling and fine-tuning for downstream applications. PLMs have their own training paradigms (usually self-supervised) and serve as foundation models in modern NLP systems. This overview paper provides an introduction to both CLMs and PLMs from five aspects, i.e., linguistic units, structures, training methods, evaluation methods, and applications. Furthermore, we discuss the relationship between CLMs and PLMs and shed light on the future directions of language modeling in the pre-trained era
    corecore