33 research outputs found
Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation
The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set
A Low Complexity Estimation Method of Entropy for Real-Time Seizure Detection
In recent years, many studies have proposed seizure detection algorithms, but most of them require high computing resources and a large amount of memory, which are difficult to implement in wearable devices. This paper proposes a seizure detection algorithm that uses a small number of features to reduce the memory requirements of the algorithm. During feature extraction, this paper proposes an entropy estimation method that uses bitwise operations instead of logarithmic operations to reduce the algorithm’s demand for computing resources. The experimental results show that the computing time can be reduced by about 81.58%. The seizure detection algorithm in this paper is implemented in an ultra-low power embedded system and performs 7 classification tasks in the Bonn data set to verify the performance of the algorithm. The average classification performance is: Accuracy (97.13%), Specificity (97.57%) and Sensitivity (98.42%). Compared with previous studies, the algorithm of this paper has comparable classification performance, but the proposed algorithm only needs 0.23 seconds from feature extraction to classification result, to the best of our knowledge, which is the seizure detection algorithm with the least computing time currently applied to wearable devices