162 research outputs found

    Hagfish Conservation Needed in Taiwan

    Get PDF
    Hagfish is the most primitive craniate and is a sister group to vertebrates. The hagfish attracts the interest of fishery biologists and ichthyologists due to its commercial utilization (e.g., for leather products and food) and its diverse specializations. There are about 60 hagfish worldwide species including the shallow-water Eptatretineae and deep-sea Myxininae. Taiwan is a region with a high biodiversity of hagfish species. Eleven species in the genera Myxine, Eptatretus and Paramyxine have been recorded in this region, and they have been the subject of numerous scientific studies, focusing on topics including phylogeny, photo-response behavior, reproductive biology, heavy metal accumulation and muscle proteomics and metabolomics. Based on morphological and molecular evidence, we found that Paramyxine cheni and Eptatretus rubicundus are the most primitive species in the subfamily Eptatretineae, and their conservation deserves special attention. In addition, the overfishing of Taiwanese hagfish has also been noted and is becoming a challenging question with hagfish research in Taiwan

    An Intermediate in the evolution of superfast sonic muscles.

    Get PDF
    Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held) and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae) that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1) causing the tendon and bladder to snap back (part 2) generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles

    An Intermediate in the evolution of superfast sonic muscles

    Get PDF
    Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held) and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae) that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1) causing the tendon and bladder to snap back (part 2) generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles

    Regulation of amino acid and nucleotide metabolism by crustacean hyperglycemic hormone in the muscle and hepatopancreas of the crayfish Procambarus clarkia.

    Get PDF
    To comprehensively characterize the metabolic roles of crustacean hyperglycemic hormone (CHH), metabolites in two CHH target tissues of the crayfish Procambarus clarkii, whose levels were significantly different between CHH knockdown and control (saline-treated) animals, were analyzed using bioinformatics tools provided by an on-line analysis suite (MetaboAnalyst). Analysis with Metabolic Pathway Analysis (MetPA) indicated that in the muscle Glyoxylate and dicarboxylate metabolism, Nicotinate and nicotinamide metabolism, Alanine, aspartate and glutamate metabolism, Pyruvate metabolism, and Nitrogen metabolism were significantly affected by silencing of CHH gene expression at 24 hours post injection (hpi), while only Nicotinate and nicotinamide metabolism remained significantly affected at 48 hpi. In the hepatopancreas, silencing of CHH gene expression significantly impacted, at 24 hpi, Pyruvate metabolism and Glycolysis or gluconeogenesis, and at 48 hpi, Glycine, serine and threonine metabolism. Moreover, analysis using Metabolite Set Enrichment Analysis (MSEA) showed that many metabolite sets were significantly affected in the muscle at 24hpi, including Ammonia recycling, Nicotinate and nicotinamide metabolism, Pyruvate metabolism, Purine metabolism, Warburg effect, Citric acid cycle, and metabolism of several amino acids, and at 48 hpi only Nicotinate and nicotinamide metabolism, Glycine and serine metabolism, and Ammonia recycling remained significantly affected. In the hepatopancreas, MSEA analysis showed that Fatty acid biosynthesis was significantly impacted at 24 hpi. Finally, in the muscle, levels of several amino acids decreased significantly, while those of 5 other amino acids or related compounds significantly increased in response to CHH gene silencing. Levels of metabolites related to nucleotide metabolism significantly decreased across the board at both time points. In the hepatopancreas, the effects were comparatively minor with only levels of thymine and urea being significantly decreased at 24 hpi. The combined results showed that the metabolic effects of silencing CHH gene expression were far more diverse than suggested by previous studies that emphasized on carbohydrate and energy metabolism. Based on the results, metabolic roles of CHH on the muscle and hepatopancreas are suggested: CHH promotes carbohydrate utilization in the hepatopancreas via stimulating glycolysis and lipolysis, while its stimulatory effect on nicotinate and nicotinamide metabolism plays a central role in coordinating metabolic activity in the muscle with diverse and wide-ranging consequences, including enhancing the fluxes of glycolysis, TCA cycle, and pentose phosphate pathway, leading to increased ATP supply and elevated protein and nucleic acid turnovers

    Flood avoidance behaviour in Brown Dippers Cinclus pallasii

    Get PDF
    Extreme weather events such as tropical cyclones are becoming more frequent, but efforts to understand their impact on wildlife have focused on population-level change rather than the behavioural responses of individuals. In this study, we monitored individually marked Brown Dippers Cinclus pallasii in upland Taiwanese streams in order to investigate the movements of these birds following typhoons in 2004, 2012 and 2013. Individuals moved significantly longer distances immediately after floods compared with before, and in typhoon years compared with other years. Most of these movements involved temporary displacement from a major stream to one of its tributaries, where population size and food abundance are typically lower. These results suggest that movements after flooding were not driven by food abundance but that relatively poor quality streams may provide an important refuge for birds following typhoons

    The Functional Haplotypes of CHRM3 Modulate mRNA Expression and Associate with Bladder Cancer among a Chinese Han Population in Kaohsiung City

    Get PDF
    Bladder cancer is one of the major cancer types and both environmental factors and genetic background play important roles in its pathology. Kaohsiung is a high industrialized city in Taiwan, and here we focused on this region to evaluate the genetic effects on bladder cancer. Muscarinic acetylcholine receptor M3 (CHRM3) was reported as a key receptor in different cancer types. CHRM3 is located at 1q42-43 which was reported to associate with bladder cancer. Our study attempted to delineate whether genetic variants of CHRM3 contribute to bladder cancer in Chinese Han population in south Taiwan. Five selected SNPs (rs2165870, rs10802789, rs685550, rs7520974, and rs3738435) were genotyped for 30 bladder cancer patients and 60 control individuals and genetic association studies were performed. Five haplotypes (GTTAT, ATTGT, GCTAC, ACTAC, and ACCAC) were found significantly associated with low CHRM3 mRNA level and contributed to increased susceptibility of bladder cancer in Kaohsiung city after rigid 10000 consecutive permutation tests. To our knowledge, this is the first genetic association study that reveals the genetic contribution of CHRM3 gene in bladder cancer etiology

    Association Between Acid-Sensing Ion Channel 3 Gene Variants and Balance Impairment in People With Mild Traumatic Brain Injury

    Get PDF
    Introduction: Dizziness and balance impairment are common symptoms of mild traumatic brain injury (mTBI). Acid-sensing ion channel 3 (ASIC3) is expressed in the vestibular and proprioceptive systems and associated with balance functions. However, whether the genetic variants of ASIC3 are associated with people who suffer dizziness and balance impairment after mTBI remained unknown.Materials and methods: A total of 200 people with mTBI and 109 non-mTBI controls were recruited. Dizziness, balance functions, and the ability to perform daily activities were assessed by Dizziness Handicap Inventory (DHI), and objective balance functions were investigated by the postural stability test. Three diseases-related genetic variants of ASIC3 were determined through polymerase chain reaction and followed by restriction fragment length polymorphism. The Student's t-test and Mann-Whitney U-test were used for normal and abnormal distributed data, respectively. The regression was applied to adjust gender and age. The normality of continuous data was evaluated by Shapiro-Wilk test.Results: In the mTBI people, the rs2288645-A allele carriers exhibited a significantly worse physical domain DHI score (A-allele carriers: 11.39 ± 8.42, non-A carriers: 8.76 ± 7.87, p = 0.03). The rs4148855-GTC deletion carriers an exhibited significantly worse overall postural stability (GTC deletion carriers: 0.53 ± 0.33, non-carriers: 0.46 ± 0.20, p = 0.03). In the controls, rs2288646-A allele carriers were significant worse in the medial-to-lateral postural stability (A-allele carriers: 0.31 ± 0.17, non-A carriers: 0.21 ± 0.10, p = 0.01).Conclusion: The present study demonstrated that ASIC3 genetic variants were associated with certain aspects of balance functions and dizziness questionnaires in people of mTBI and non-mTBI. It provides a possible evidence that ASIC3 could be a new target for the management of the balancing disorders. However, further investigations are warranted to elucidate the underlying mechanisms and clinical significance

    Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Get PDF
    Cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB) and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa). However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR). In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1) expression and the inhibition of acidic vesicular organelle (AVO) formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa
    corecore