3 research outputs found

    An innovative integral field unit upgrade with 3D-printed micro-lenses for the RHEA at Subaru

    Get PDF
    In the new era of Extremely Large Telescopes (ELTs) currently under construction, challenging requirements drive spectrograph designs towards techniques that efficiently use a facility's light collection power. Operating in the single-mode (SM) regime, close to the diffraction limit, reduces the footprint of the instrument compared to a conventional high-resolving power spectrograph. The custom built injection fiber system with 3D-printed micro-lenses on top of it for the replicable high-resolution exoplanet and asteroseismology spectrograph at Subaru in combination with extreme adaptive optics of SCExAO, proved its high efficiency in a lab environment, manifesting up to ~77% of the theoretical predicted performance

    A high resolution echelle spectrograph for exoplanet searches with small aperture telescopes

    No full text
    High precision Doppler observations of bright stars can be made efficiently with small aperture telescopes. We are constructing a high resolution echelle spectrograph for the new 0.6 m telescope at Central Washington University. The spectrograph is fed by a multimode fiber and operates in the visible wavelength range of 380-670 nm. The spectrograph uses a white pupil design with 100 mm beam diameter and a monolithic R4 echelle grating
    corecore