628 research outputs found
Factorization of shell-model ground-states
We present a new method that accurately approximates the shell-model
ground-state by products of suitable states. The optimal factors are determined
by a variational principle and result from the solution of rather
low-dimensional eigenvalue problems. The power of this method is demonstrated
by computations of ground-states and low-lying excitations in sd-shell and
pf-shell nuclei.Comment: 5+epsilon pages, 5 eps-figures. Main additions: wave-function
overlaps, angular momentum expectation values, application to Ni56. To be
published as Rapid Communication in PR
Characterization study of GaN-based epitaxial layer and light-emitting diode on nature-patterned sapphire substrate
[[abstract]]Chemical wet etching on c-plane sapphire wafers by three etching solutions (H3PO4, H2SO4, and H3PO4/H2SO4 mixing solution) was studied. Among these etching agents, the mixing H3PO4/H2SO4 solution has the fastest etching rate (1.5 Îźm/min). Interestingly, we found that H2SO4 does not etch the c-plane sapphire wafer in thickness; instead, a facet pyramidal pattern is formed on the c-plane sapphire wafer. GaN light-emitting diode (LED) epitaxial structure was grown on the sapphire wafer with the pyramidal pattern and the standard flat sapphire wafer. X-ray diffraction and photoluminescence measurement show that the pyramidal pattern on the sapphire wafer improved crystalline quality but augmented the compressive stress level in the GaN LED epilayer. The horizontal LED chips fabricated on the pyramidal-patterned sapphire wafer have a larger light output than the horizontal LED chips fabricated on the standard flat sapphire wafer by 20%.[[notice]]čŁćŁĺŽç˘[[incitationindex]]SCI[[booktype]]ç´ćŹ[[booktype]]éťĺ
Integrin activation - the importance of a positive feedback
Integrins mediate cell adhesion and are essential receptors for the
development and functioning of multicellular organisms. Integrin activation is
known to require both ligand and talin binding and to correlate with cluster
formation but the activation mechanism and precise roles of these processes are
not yet resolved. Here mathematical modeling, with known experimental
parameters, is used to show that the binding of a stabilizing factor, such as
talin, is alone insufficient to enable ligand-dependent integrin activation for
all observed conditions; an additional positive feedback is required.Comment: in press in Bulletin of Mathematical Biolog
Quenching of Weak Interactions in Nucleon Matter
We have calculated the one-body Fermi and Gamow-Teller charge-current, and
vector and axial-vector neutral-current nuclear matrix elements in nucleon
matter at densities of 0.08, 0.16 and 0.24 fm and proton fractions
ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained
by operating on Fermi-gas states by a symmetrized product of pair correlation
operators determined from variational calculations with the Argonne v18 and
Urbana IX two- and three-nucleon interactions. The squares of the charge
current matrix elements are found to be quenched by 20 to 25 % by the
short-range correlations in nucleon matter. Most of the quenching is due to
spin-isospin correlations induced by the pion exchange interactions which
change the isospins and spins of the nucleons. A large part of it can be
related to the probability for a spin up proton quasi-particle to be a bare
spin up/down proton/neutron. We also calculate the matrix elements of the
nuclear Hamiltonian in the same correlated basis. These provide relatively mild
effective interactions which give the variational energies in the Hartree-Fock
approximation. The calculated two-nucleon effective interaction describes the
spin-isospin susceptibilities of nuclear and neutron matter fairly accurately.
However 3-body terms are necessary to reproduce the compressibility. All
presented results use the simple 2-body cluster approximation to calculate the
correlated basis matrix elements.Comment: submitted to PR
The synthesized 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1) promoted G2/M arrest through inhibition of CDK1 and induced apoptosis through the mitochondrial-dependent pathway in CT-26 murine colorectal adenocarcinoma cells
In this study, we investigated the effects of 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1) on cell viability, cell cycle arrest and apoptosis in CT-26 murine colorectal adenocarcinoma cells. For determining cell viability, the MTT assay was used. CHM-1 promoted G2/M arrest by PI staining and flow cytometric analysis. Apoptotic cells were evaluated by DAPI staining. We used CDK1 kinase assay, Western blot analysis and caspase activity assays for examining the CDK1 activity and proteins correlated with apoptosis and cell cycle arrest. The in vivo anti-tumor effects of CHM-1-P were evaluated in BALB/c mice inoculated with CT-26 cells orthotopic model. CHM-1 induced CT-26 cell viability inhibition and morphologic changes in a dose-dependent and time-dependent manner and the approximate IC(50) was 742.36 nM. CHM-1 induced significant G2/M arrest and apoptosis in CT-26 cells. CHM-1 inhibited the CDK1 activity and decreased CDK1, Cyclin A, Cyclin B protein levels. CHM-1 induced apoptosis in CT-26 cells and promoted increasing of cytosolic cytochrome c, AIF, Bax, BAD, cleavage of pro-caspase-9, and -3. The significant reduction of caspase-9 and -3 activity and increasing the viable CT-26 cells after pretreated with caspase-9 and -3 inhibitor indicated that CHM-1-induced apoptosis was mainly mediated a mitochondria-dependent pathway. CHM-1-P improved mice survival rate, and enlargement of the spleen and liver metastasis were significantly reduced in groups treated with either 10 mg/kg and 30 mg/kg of CHM-1-P and 5-FU in comparison to these of CT-26/BALB/c mice. Taken together, CHM-1 acted against colorectal adenocarcinoma cells in vitro via G2/M arrest and apoptosis, and CHM-1-P inhibited tumor growth in vivo
Development and Validation of a Tokamak Skin Effect Transformer model
A control oriented, lumped parameter model for the tokamak transformer
including the slow flux penetration in the plasma (skin effect transformer
model) is presented. The model does not require detailed or explicit
information about plasma profiles or geometry. Instead, this information is
lumped in system variables, parameters and inputs. The model has an exact
mathematical structure built from energy and flux conservation theorems,
predicting the evolution and non linear interaction of the plasma current and
internal inductance as functions of the primary coil currents, plasma
resistance, non-inductive current drive and the loop voltage at a specific
location inside the plasma (equilibrium loop voltage). Loop voltage profile in
the plasma is substituted by a three-point discretization, and ordinary
differential equations are used to predict the equilibrium loop voltage as
function of the boundary and resistive loop voltages. This provides a model for
equilibrium loop voltage evolution, which is reminiscent of the skin effect.
The order and parameters of this differential equation are determined
empirically using system identification techniques. Fast plasma current
modulation experiments with Random Binary Signals (RBS) have been conducted in
the TCV tokamak to generate the required data for the analysis. Plasma current
was modulated in Ohmic conditions between 200kA and 300kA with 30ms rise time,
several times faster than its time constant L/R\approx200ms. The model explains
the most salient features of the plasma current transients without requiring
detailed or explicit information about resistivity profiles. This proves that
lumped parameter modeling approach can be used to predict the time evolution of
bulk plasma properties such as plasma inductance or current with reasonable
accuracy; at least in Ohmic conditions without external heating and current
drive sources
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
- âŚ