3 research outputs found

    Fast Methods for Simulation of Biomolecule of Electrostatics

    Get PDF
    Biomolecular structure and interactions in aqueous environment are determined by a complicated interplay between physical and chemical forces including solvation, electrostatics, van der Waals forces, the hydrophobic effect and covalent bonding. Among them, electrostatics has been of particular interest due to its long-range nature and the tradeoff between desolvation and interaction effects [1]. In addition, electrostatic interactions play a significant role within a biomolecule as well as between biomolecules, making the balance between the two vital to the understanding of macromolecular systems. As a result, much effort has been devoted to accurate modeling and simulation of biomolecule electrostatics. One important application of this work is to compute the structure of electrostatic interactions for a biomolecule in an electrolyte solution, as well as the potential that the molecule generates in space. There are two valuable uses for these simulations. First, it provides a full picture of the electrostatic energetics of a biomolecular system, improving our understanding of how electrostatics contributes to stability, specificity, function, and molecular interaction [2]. Second, these simulations serve as a tool for molecular design, since electrostatic complementarity is an important feature of interacting molecules. Through examination of the electrostatics and potential field generated by a protein molecule, for example, it may be possible to suggest improvements to other proteins or drug molecules that interact with it, or perhaps even design new interacting molecules de novo [3]. There are two approaches in simulating a protein macromolecule in an aqueous solution with nonzero ionic strength. Discrete/atomistic approaches based on Monte-Carlo or molecular dynamics simulations treat the macromolecule and solvent explicitly at the atomic level. Therefore, an enormous number of solvent molecules are required to provide reasonable accuracy, especially when electric fields far away from macroscopic surface are of interest, leading to computational infeasibility. In this work, we adopt instead an approach based on a continuum description of the macromolecule and solvent. Although the continuum model of biomolecule electrostatics is widely used, the numerical techniques used to evaluate the model do not exploit fast solver approaches developed for analyzing integrated circuit interconnect. I will describe the formulation used for analyzing biomolecule electrostatics, and then derive an integral formulation of the problem that can be rapidly solved with precorrected-FFT method [4].Singapore-MIT Alliance (SMA

    Fast Methods for Bimolecular Charge Optimization

    Get PDF
    We report a Hessian-implicit optimization method to quickly solve the charge optimization problem over protein molecules: given a ligand and its complex with a receptor, determine the ligand charge distribution that minimizes the electrostatic free energy of binding. The new optimization couples boundary element method (BEM) and primal-dual interior point method (PDIPM); initial results suggest that the method scales much better than the previous methods. The quadratic objective function is the electrostatic free energy of binding where the Hessian matrix serves as an operator that maps the charge to the potential. The unknowns are the charge values at the charge points, and they are limited by equality and inequality constraints that model physical considerations, i.e. conservation of charge. In the previous approaches, finite-difference method is used to model the Hessian matrix, which requires significant computational effort to remove grid-based inaccuracies. In the novel approach, BEM is used instead, with precorrected FFT (pFFT) acceleration to compute the potential induced by the charges. This part will be explained in detail by Shihhsien Kuo in another talk. Even though the Hessian matrix can be calculated an order faster than the previous approaches, still it is quite expensive to find it explicitly. Instead, the KKT condition is solved by a PDIPM, and a Krylov based iterative solver is used to find the Newton direction at each step. Hence, only Hessian times a vector is necessary, which can be evaluated quickly using pFFT. The new method with proper preconditioning solves a 500 variable problem nearly 10 times faster than the techniques that must find a Hessian matrix explicitly. Furthermore, the algorithm scales nicely due to the robustness in number of IPM iterations to the size of the problem. The significant reduction in cost allows the analysis of much larger molecular system than those could be solved in a reasonable time using the previous methods.Singapore-MIT Alliance (SMA

    Fast methods for simulation of biomolecule electrostatics

    No full text
    The Problem: Biomolecular structure and interactions in an aqueous environment are determined by a complicated interplay between physical and chemical forces including solvation, electrostatics, van der Waals forces, the hydrophobic effect, and covalent bonding. Electrostatic forces have received a great deal of study due to their longrange nature and the tradeoff between desolvation and interaction effects [1]. In addition, electrostatic interactions play a significant role within a biomolecule as well as between biomolecules, making the balance between the two vital to the understanding of macromolecular systems. Specifically, the goal of this work is to accurately and quickly compute the strength of electrostatic interactions for a biomolecule in an electrolyte solution, as well as the potential field that the molecule generates in all space. Motivation: There are two valuable uses for these computations. First, it provides a full picture of the electrostatic energetics of a biomolecular system, improving our understanding of how electrostatics contribute to stability, function, and molecular interactions [3]. Second, these simulations serve as a tool for molecular design, since electrostatic complementarity is an important feature of interacting molecules. Through examination of the electrostatics and potential field generated by a protein molecule, for example, it may be possible to suggest improvements to other proteins or drug molecules that interact with it, or perhaps even design new interacting molecules de novo [2]. Previous Work: One popular approach to simulating biomolecule electrostatics in aqueous solution with nonzer
    corecore