599 research outputs found
Solar Neutrinos with Three Flavor Mixings
The recent 71Ga solar neutrino observation is combined with the 37Cl and
Kamiokande-II observations in an analysis for neutrino masses and mixings. The
allowed parameter region is found for matter enhanced mixings among all three
neutrino flavors. Distortions of the solar neutrino spectrum unique to three
flavors are possible and may be observed in continuing and next generation
experiments.Comment: August 1992 (Revised) PURD-TH-92-
Non-adiabatic level crossing in (non-) resonant neutrino oscillations
We study neutrino oscillations and the level-crossing probability
P_{LZ}=\exp(-\gamma_n\F_n\pi/2) in power-law like potential profiles
. After showing that the resonance point coincides only for a
linear profile with the point of maximal violation of adiabaticity, we point
out that the ``adiabaticity'' parameter can be calculated at an
arbitrary point if the correction function \F_n is rescaled appropriately. We
present a new representation for the level-crossing probability,
P_{LZ}=\exp(-\kappa_n\G_n), which allows a simple numerical evaluation of
in both the resonant and non-resonant cases and where \G_n contains
the full dependence of on the mixing angle . As an application
we consider the case important for oscillations of supernova neutrinos.Comment: 4 pages, revtex, 3 eps figure
Solar Mikheyev-Smirnov-Wolfenstein Effect with Three Generations of Neutrinos
Under the assumption that the density variation of the electrons can be
approximated by an exponential function, the solar Mikheyev-Smirnov-Wolfenstein
effect is treated for three generations of neutrinos. The generalized
hypergeometric functions that result from the exact solution of this problem
are studied in detail, and a method for their numerical evaluation is
presented. This analysis plays a central role in the determination of neutrino
masses, not only the differences of their squares, under the assumption of
universal quark-lepton mixing.Comment: 22 pages, LaTeX, including 2 figure
Classical Nambu-Goldstone fields
It is shown that a Nambu-Goldstone (NG) field may be coherently produced by a
large number of particles in spite of the fact that the NG bosons do not couple
to flavor conserving scalar densities like . If a flavor
oscillation process takes place the phases of the pseudo-scalar or flavor
violating densities of different particles do not necessarily cancel each
other. The NG boson gets a macroscopic source whenever the total (spontaneously
broken) quantum number carried by the source particles suffers a net increase
or decrease in time. If the lepton numbers are spontaneously broken such
classical NG (majoron) fields may significantly change the neutrino oscillation
processes in stars pushing the observational capabilities of neutrino-majoron
couplings down to GeV.Comment: 11 pages, updated, to appear in PR
Is bi-maximal mixing compatible with the large angle MSW solution of the solar neutrino problem?
It is shown that the large angle MSW solution of the solar neutrino problem
with a bi-maximal neutrino mixing matrix implies an energy-independent
suppression of the solar nu_e flux. The present solar neutrino data exclude
this solution of the solar neutrino problem at 99.6% CL.Comment: 6 pages. No figure
The Oscillation Probability of GeV Solar Neutrinos of All Active Species
In this paper, I address the oscillation probability of O(GeV) neutrinos of
all active flavours produced inside the Sun and detected at the Earth. Flavours
other than electron-type neutrinos may be produced, for example, by the
annihilation of WIMPs which may be trapped inside the Sun. In the GeV energy
regime, matter effects are important both for the ``1-3'' system and the
``1-2'' system, and for different neutrino mass hierarchies. A numerical scan
of the multidimensional three-flavour parameter space is performed,
``inspired'' by the current experimental situation. One important result is
that, in the three-flavour oscillation case, P{alpha,beta} is different from
P{beta,alpha} for a significant portion of the parameter space, even if there
is no CP-violating phase in the MNS matrix. Furthermore, P{mu,mu} has a
significantly different behaviour from P{tau,tau}, which may affect
expectations for the number of events detected at large neutrino telescopes.Comment: 38 pages, 10 figure
Supernova neutrino oscillations: A simple analytical approach
Analyses of observable supernova neutrino oscillation effects require the
calculation of the electron (anti)neutrino survival probability P_ee along a
given supernova matter density profile. We propose a simple analytical
prescription for P_ee, based on a double-exponential form for the crossing
probability and on the concept of maximum violation of adiabaticity. In the
case of two-flavor transitions, the prescription is shown to reproduce
accurately, in the whole neutrino oscillation parameter space, the results of
exact numerical calculations for generic (realistic or power-law) profiles. The
analytical approach is then generalized to cover three-flavor transitions with
(direct or inverse) mass spectrum hierarchy, and to incorporate Earth matter
effects. Compact analytical expressions, explicitly showing the symmetry
properties of P_ee, are provided for practical calculations.Comment: 22 pages (RevTeX) + 5 figures (PostScript
SN1987A and the Status of Oscillation Solutions to the Solar Neutrino Problem (including an appendix discussing the NC and day/night data from SNO)
We study neutrino oscillations and the level-crossing probability PLZ in
power-law potential profiles A(r)\propto r^n. We give local and global
adiabaticity conditions valid for all mixing angles theta and discuss different
representations for PLZ. For the 1/r^3 profile typical of supernova envelopes
we compare our analytical to numerical results and to earlier approximations
used in the literature. We then perform a combined likelihood analysis of the
observed SN1987A neutrino signal and of the latest solar neutrino data,
including the recent SNO CC measurement. We find that, unless all relevant
supernova parameters (released binding energy, \bar\nu_e and \bar\nu_{\mu,\tau}
temperatures) are near their lowest values found in simulations, the status of
large mixing type solutions deteriorates considerably compared to fits using
only solar data. This is sufficient to rule out the vacuum-type solutions for
most reasonable choices of astrophysics parameters. The LOW solution may still
be acceptable, but becomes worse than the SMA-MSW solution which may, in some
cases, be the best combined solution. On the other hand the LMA-MSW solution
can easily survive as the best overall solution, although its size is generally
reduced when compared to fits to the solar data only.Comment: 31 pages, 32 eps figures; 5 pages, 5 eps figures addendum in v2,
discussing the recent SNO NC data and changes in SN paramete
Insights on Distinct Left Atrial Remodeling Between Atrial Fibrillation and Heart Failure With Preserved Ejection Fraction
Background: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) commonly coexist with overlapping pathophysiology like left atrial (LA) remodeling, which might differ given different underlying mechanisms. Objectives: We sought to investigate the different patterns of LA wall remodeling in AF vs. HFpEF. Methods: We compared LA wall characteristics including wall volume (LAWV), wall thickness (LAWT), and wall thickness heterogeneity (LAWT[SD]) and LA structure, function among the controls (without AF or HFpEF, n = 115), HFpEF alone (n = 59), AF alone (n = 37), and HFpEF+AF (n = 38) groups using multi-detector computed tomography and echocardiography. Results: LA wall remodeling was most predominant and peak atrial longitudinal strain (PALS) was worst in HFpEF+AF patients as compared to the rest. Despite lower E/e' (9.8 ± 3.8 vs. 13.4 ± 6.4) yet comparable LA volume, LAWT and PALS in AF alone vs. HFpEF alone, LAWV [12.6 (11.6â15.3) vs. 12.0 (10.2â13.7); p = 0.01] and LAWT(SD) [0.68 (0.61â0.71) vs. 0.60 (0.56â0.65); p < 0.001] were significantly greater in AF alone vs. HFpEF alone even after multi-variate adjustment and propensity matching. After excluding the HFpEF+AF group, both LAWV and LAWT [SD] provided incremental values when added to PALS or LAVi (all p for net reclassification improvement <0.05) in discriminating AF alone, with LAWT[SD] yielding the largest C-statistic (0.78, 95% CI: 0.70â0.86) among all LA wall indices. Conclusions: Despite a similar extent of LA enlargement and dysfunction in HFpEF vs. AF alone, larger LAWV and LAWT [SD] can distinguish AF from HFpEF alone, suggesting the distinct underlying pathophysiological mechanism of LA remodeling in AF vs. HFpEF.</p
- âŠ