10 research outputs found

    Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab.

    Get PDF
    The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab\u27s mechanism of action

    Development and Characterization of MYB-NFIB Fusion Expression in Adenoid Cystic Carcinoma

    No full text
    Adenoid cystic carcinoma (ACC) is the second most common cancer type arising from the salivary gland. The frequent occurrence of chromosome t(6;9) translocation leading to the fusion of MYB and NFIB transcription factor genes is considered a genetic hallmark of ACC. This inter-chromosomal rearrangement may encode multiple variants of functional MYB-NFIB fusion in ACC. However, the lack of an ACC model that harbors the t(6;9) translocation has limited studies on defining the potential function and implication of chimeric MYB-NFIB protein in ACC. This report aims to establish a MYB-NFIB fusion protein expressing system in ACC cells for in vitro and in vivo studies. RNA-seq data from MYB-NFIB translocation positive ACC patients’ tumors and MYB-NFIB fusion transcript in ACC patient-derived xenografts (ACCX) was analyzed to identify MYB breakpoints and their frequency of occurrence. Based on the MYB breakpoint identified, variants of MYB-NFIB fusion expression system were developed in a MYB-NFIB deficient ACC cell lines. Analysis confirmed MYB-NFIB fusion protein expression in ACC cells and ACCXs. Furthermore, recombinant MYB-NFIB fusion displayed sustained protein stability and impacted transcriptional activities of interferon-associated genes set as compared to a wild type MYB. In vivo tumor formation analysis indicated the capacity of MYB-NFIB fusion cells to grow as implanted tumors, although there were no fusion-mediated growth advantages. This expression system may be useful not only in studies to determine the functional aspects of MYB-NFIB fusion but also in evaluating effective drug response in vitro and in vivo settings

    Genetic variation in catechol-O-methyltransferase is associated with individual differences in conditioned pain modulation in healthy subjects

    No full text
    Background: Genetic variation in the catechol-O-methyltransferase (COMT) gene is associated with sensitivity to both acute experimental pain and chronic pain conditions. Four single nucleotide polymorphisms (SNPs) have traditionally been used to infer three common haplotypes designated as low, average and high pain sensitivity and are reported to affect both COMT enzymatic activity and pain sensitivity. One mechanism that may partly explain individual differences in sensitivity to pain is conditioned pain modulation (CPM). We hypothesized that variation in CPM may have a genetic basis. Methods: We evaluated CPM in 77 healthy pain-free Caucasian subjects by applying repeated mechanical stimuli to the dominant forearm using 26-g von Frey filament as the test stimulus with immersion of the non-dominant hand in hot water as the conditioning stimulus. We assayed COMT SNP genotypes by the TaqMan method using DNA extracted from saliva. Results: SNP rs4680 (val158met) was not associated with individual differences in CPM. However, CPM was associated with COMT low pain sensitivity haplotypes under an additive model (p = 0.004) and the effect was independent of gender. Conclusions: We show that, although four SNPs are used to infer COMT haplotypes, the low pain sensitivity haplotype is determined by SNP rs6269 (located in the 5′ regulatory region of COMT), suggesting that inherited variation in gene expression may underlie individual differences in pain modulation. Analysis of 13 global populations revealed that the COMT low pain sensitivity haplotype varies in frequency from 13% to 44% and showed that two SNPs are sufficient to distinguish all COMT haplotypes in most populations

    Ectopic activation of the miR-200c-EpCAM axis enhances antitumor T cell responses in models of adoptive cell therapy

    No full text
    Adoptive T cell therapy (ACT) is a promising strategy for treating cancer, but it often fails because of cell intrinsic regulatory programs that limit the degree or duration of T cell function. In this study, we found that ectopic expression of microRNA-200c (miR-200c) markedly enhanced the antitumor activity of CD8 cytotoxic T lymphocytes (CTLs) during ACT in multiple mouse models. CTLs transduced with miR-200c exhibited reduced apoptosis during engraftment and enhanced in vivo persistence, accompanied by up-regulation of the transcriptional regulator T cell factor 1 (TCF1) and the inflammatory cytokine tumor necrosis factor (TNF). miR-200c elicited these changes by suppressing the transcription factor Zeb1 and thereby inducing genes characteristic of epithelial cells. Overexpression of one of these genes, , was sufficient to augment therapeutic T cell responses against both solid and liquid tumors. These results identify the miR-200c–EpCAM axis as an avenue for improving ACT and demonstrate that select genetic perturbations can produce phenotypically distinct T cells with advantageous therapeutic properties

    A pan-cancer analysis of PBAF complex mutations and their association with immunotherapy response

    No full text
    The clinical benefit from immunotherapy response in patients with mutations of genes forming the chromatin remodelling complex PBAF remains controversial. Here the authors show that PBAF complex mutations are not associated with favourable response in pan-cancer cohorts of patients treated with immune-checkpoint blockade

    Mitonuclear genotype remodels the metabolic and microenvironmental landscape of HĂĽrthle cell carcinoma

    Get PDF
    HĂĽrthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were elevated exclusively in HCC. The presence of gLOH was not associated with metabolic phenotypes but rather with reduced immune infiltration, indicating that gLOH confers a selective advantage partially through immunosuppression. Unsupervised multimodal clustering revealed four clusters of HCC with distinct clinical, metabolomic, and microenvironmental phenotypes but overlapping genotypes. These findings chart the metabolic and microenvironmental landscape of HCC and shed light on the interaction between genotype, metabolism, and the microenvironment in cancer

    Precision Radiotherapy: Reduction in Radiation for Oropharyngeal Cancer in the 30 ROC Trial

    No full text
    BackgroundPatients with human papillomavirus-related oropharyngeal cancers have excellent outcomes but experience clinically significant toxicities when treated with standard chemoradiotherapy (70 Gy). We hypothesized that functional imaging could identify patients who could be safely deescalated to 30 Gy of radiotherapy.MethodsIn 19 patients, pre- and intratreatment dynamic fluorine-18-labeled fluoromisonidazole positron emission tomography (PET) was used to assess tumor hypoxia. Patients without hypoxia at baseline or intratreatment received 30 Gy; patients with persistent hypoxia received 70 Gy. Neck dissection was performed at 4 months in deescalated patients to assess pathologic response. Magnetic resonance imaging (weekly), circulating plasma cell-free DNA, RNA-sequencing, and whole-genome sequencing (WGS) were performed to identify potential molecular determinants of response. Samples from an independent prospective study were obtained to reproduce molecular findings. All statistical tests were 2-sided.ResultsFifteen of 19 patients had no hypoxia on baseline PET or resolution on intratreatment PET and were deescalated to 30 Gy. Of these 15 patients, 11 had a pathologic complete response. Two-year locoregional control and overall survival were 94.4% (95% confidence interval = 84.4% to 100%) and 94.7% (95% confidence interval = 85.2% to 100%), respectively. No acute grade 3 radiation-related toxicities were observed. Microenvironmental features on serial imaging correlated better with pathologic response than tumor burden metrics or circulating plasma cell-free DNA. A WGS-based DNA repair defect was associated with response (P = .02) and was reproduced in an independent cohort (P = .03).ConclusionsDeescalation of radiotherapy to 30 Gy on the basis of intratreatment hypoxia imaging was feasible, safe, and associated with minimal toxicity. A DNA repair defect identified by WGS was predictive of response. Intratherapy personalization of chemoradiotherapy may facilitate marked deescalation of radiotherapy
    corecore